The present disclosure relates to a method for manufacturing a microelectronic semiconductor device and to the device obtained with said method. More in particular, the present disclosure relates to manufacture of a trench channel for a vacuum transistor device.
In the present context, the term “empty trench” refers to the fact that the trench (or other cavity of any shape) is not filled, irrespective of the conditions of pressure existing within the trench itself.
In semiconductor devices, it is at times desirable to provide an empty trench. For example, vacuum-channel transistor devices are under study, which exploit the operating principle of thermionic valves, and are further known by the terms VMDs (Vacuum Microelectronic Devices), or UVTs (Ultra-Vacuum Transistors). In these devices, a deep trench is present having an internal vacuum pressure (e.g., 10−5 torr) closed at the top by a metal layer, for example aluminum, operating as cathode or electron-emitter or ion-emitter element.
An example of embodiment of an empty-trench microelectronic device is described, for example, in the patent document US 2014/353576 and is schematically illustrated in
With reference to
The stack 3 of layers here comprises a first insulating layer 4 over the substrate 2, a conductive layer 5, for example, of polycrystalline silicon, and a second insulating layer 6, over the conductive layer 5. The conductive layer 5 has the function, when appropriately biased, of electrode for controlling electron emission by the cathode, modulating the electrical extraction field.
A contact structure 12 is formed over the cathode metal region 11, and an anode metal layer 13 extends underneath the substrate 2.
A passivation layer 15, of silicon nitride, coats the side walls of the trench 10.
The device 1 is obtained by depositing the layers 4-6 in sequence on the substrate 2 and then chemically removing selective portions of the layers 4-6 using a photolithographic process and appropriate etching chemistries. Next, the passivation layer 15 is deposited in a highly conformable way in the trench 10 and shaped for removing it from the bottom of the trench 10 and from the front of the device 1. Then a metal layer is deposited in a non-conformable way and shaped lithographically, for example an aluminum layer, which closes the trench 10 at the top and forms the cathode metal region 11.
In the practical embodiment of the device, there have been noted difficulties in deposition of the metal layer that is to form the cathode metal region 11. In fact, even using non-conformable material and deposition techniques, not always is it possible to guarantee that the metal will not penetrate sensibly into the trench 10. On the other hand, the presence of metal particles inside the trench is disadvantageous, given that possible metal traces in the trench 10 may give rise to leakage that may not be readily distinguished from the emissions of the cathode metal region, thus determining a not always correct operation of the device.
In order to overcome the aforementioned problem, the patent document US 2016/141428 provides a solution that envisages the step of allowing deposition of etch reaction by-products on the inner walls of the trench up to formation of a restriction element in the proximity of the opening of the trench. In this way, thanks to the presence of the restriction element, the device thus formed does not present any intrusion of metal into the trench. However, the reaction products of a polymeric type that are formed according to said teaching are not commonly used in electronic devices, and their stability over time, during use of the device, should be evaluated.
At least some embodiments of the present disclosure are a method and a device that are alternative to the ones of the prior art and that overcome the drawbacks of the prior art.
According to the present disclosure, a method for manufacturing a microelectronic semiconductor device and the device obtained with said method are provided.
In practice, according to one aspect of the present disclosure, to prevent entry of metal material into the trench, a partial obstruction of the entrance of the trench is formed through a restriction structure suspended in at the top opening of the trench, which may serve at the same time as restriction element designed to prevent intrusion of metal into the trench and as definition of a sharp emitter cathode, i.e., one having an optimal shape for emission of charges during operation of the device.
For a better understanding of the present disclosure, a preferred embodiment thereof is now described, purely by way of non-limiting example, with reference to the attached drawings, wherein:
The method described according to the present disclosure regards provision of a microelectronic semiconductor device, with vacuum trench, such as a diode, a triode, a tetrode, a pentode, or other device having a similar basic structure.
Initially (
The substrate 31 is typically of an N type, for example doped with phosphorus, and has a resistivity of approximately 18 mΩ·cm.
The stack 32 here comprises a first insulating layer 33, a conductive layer 34, and a second insulating layer 35, in a way similar to what has been described with reference to
For example, the first insulating layer 33 is made of TEOS (Tetra-Ethyl-Ortho Silicate) formed by CVD (Chemical Vapor Deposition) with a thickness comprised between 500 and 1000 nm, for example, 500 nm.
The conductive layer 34 is made, for example, of conductive material such as polycrystalline silicon of an N type, doped with phosphorus and having a thickness comprised between 50 nm and 300 nm, for example, 100 nm. The conductive layer 34 is, for example, deposited via PECVD (Plasma-Enhanced Chemical Vapor Deposition) and may have a resistivity comprised between 10 and 100 mΩ·cm.
The second insulating layer 35 is made, for example, of TEOS, which is also deposited via CVD and has a thickness comprised between 500 nm and 1000 nm, for example, 500 nm.
Thus, the stack 32 has as a whole a thickness comprised between 1100 nm and 2000 nm, for example, 1200 nm.
Next, formed on the stack 32 is a masking layer (for example, of photoresist), which is shaped photolithographically for forming a mask 40 having an opening 38 of a shape and a width that are the same as the ones desired for a trench 41 to be obtained in subsequent manufacturing steps. For example, the opening 38 may have a circular shape with a diameter comprised between 400 nm and 700 nm, for example, approximately 600 nm.
Then, using the mask 40, an etch is carried out, with selective removal of the layers that form the stack 32 and of part of the substrate 31. In particular, RIE (Reactive Ion Etching) is carried out, using appropriate etching chemistries according to the materials to be removed.
Any possible polymeric by-products that form during the plasma-etch reaction are expelled and removed from the structure being defined, by appropriate choice of the pressure and flow of the etching gas, so that they do not deposit on the walls of the structure being formed. Removal of possible etching by-products may further occur by washing steps, as is clear to the person skilled in the art.
The trench 41 is thus formed, which extends completely through the insulating layers 33 and 35, completely through the conductive layer 34, and partially in the substrate 31, terminating in the substrate 31. According to one aspect of the present disclosure, the trench has a depth, measured in the vertical direction X, of 1100 nm.
According to a different embodiment, not shown in the figures, the trench 41 extends completely through the insulating layers 33 and 35 and the conductive layer 34, reaching the surface of the substrate 31 without penetrating therein, or penetrating into the substrate for a few nanometers or a few tens of nanometers.
The trench 41 has side walls 41a, a bottom 41b, and a opening 41c. The opening 41c of the trench 41 is defined on the insulating layer 35, whereas the bottom 41b is defined on the substrate 31.
Next (
This step entails formation of a thick photoresist layer 43 also over the wafer being processed, i.e., over the insulating layer 35. To reduce the thickness of the photoresist layer 43 on the wafer without removing or jeopardizing the photoresist that fills the trench 41, there is envisaged a step of photoexposure of the photoresist layer 43 in the absence of masking and with an exposure energy lower than the minimum dose that can be used for complete crosslinking of the photoresist layer that extends over the wafer. In other words, the exposure energy is such that the photoresist can be removed in solvent solution for a fraction of its total thickness on the wafer, and not completely (for example, for a thickness, measured along Z starting from the insulating layer 35, of approximately 50 nm).
Then, a step is carried out of bath in a solvent solution (e.g., resist edge remover (RER)) to remove the photoresist layer 43 exposed. It is thus possible to eliminate a fair part of the photoresist layer 43 from the surface of the wafer, leaving unaltered the photoresist 43 for filling the trench 41. In this step, it is not necessary, albeit desirable, to remove the photoresist completely from the surface of the wafer. It is in any case preferable to adjust the parameters of exposure of the photoresist layer 43, according to the step previously described, for having a margin of tolerance such as to guarantee preservation of the photoresist 43 in the trench 41.
Then (
Next, a step of etching of the photoresist layer 43 is carried out to remove it completely from the front of the wafer and in part from the trench 41, partially emptying it.
For this purpose, a dry etch is carried out, in particular a plasma etch based upon oxygen (O2) as sole etching chemistry.
For example, to carry out etching, the etching platform Centure® DPS (Decoupled Plasma Source) may be used set with: a working pressure of 32 mtorr; a source peak power, for plasma ignition, of 500 W; a peak power for biasing of the substrate, to obtain directionality of movement of the active species, of 100 W; a He gas pressure, to guarantee thermal contact between the back of the wafer and the chuck, of 10 torr; and a flow of O2 gas of 80 sccm.
The etch is configured, as has been said, for emptying the trench 41 partially, and in particular for removing the photoresist inside the trench 41 until a negative pressure is reached, along Z, comprised within the thickness of the insulating layer 35, for example approximately half the thickness of the insulating layer 35.
Then (
Next, an insulating layer 47 is formed, for instance, by growing TEOS oxide, on the etch-stop layer 44. In the case of growth of TEOS, the etch-stop layer 44, of SiN, further has the function of seed layer. The insulating layer 47 has a thickness comprised between 150 nm and 400 nm, more in particular between 250 nm and 300 nm.
Then (
Said etching step is carried out for removing completely the insulating layer 47 from the front of the wafer except for portions of the insulating layer 47 adjacent to the side walls of the trench 21. The anisotropic dry etch is such that the insulating layer 47 is removed at a higher rate at portions of the latter orthogonal to the etching direction (here, the etching direction is along Z, as indicated by the arrows 49), whereas portions of the insulating layer 47 substantially longitudinal to the etching direction (i.e., the portions of the insulating layer 47 lying in the plane XY) are removed at a lower rate.
Along the side walls of the trench 41, a collar element 50 is thus formed having a profile that is crowned or roughly shaped like a quarter of a torus. In cross-sectional view, the collar element 50 has a shape tapered along Z such that the lateral thickness, measured along X, of the collar element 50, decreases moving away from the trench 41 in the positive direction of the axis Z. In particular, the collar element 50 has a base side adjacent to the etch-stop layer 44 having a dimension, measured along X, approximately equal to the thickness chosen for the insulating layer 47 (e.g., between 150 nm and 400 nm). More in particular, the diameter of the trench 41 and the thickness of the insulating layer 47 are chosen such that, after the etching step just described, the collar element 50 delimits internally a surface portion 44′ of the etch-stop layer 44 having a diameter comprised between 0.1 μm and 0.3 μm, preferably between 0.15 μm and 0.2 μm. The shape, in the plane XY, of the surface portion 44′ of the etch-stop layer 44 is defined substantially by the shape, in the plane XY, chosen for the trench 41.
Etching of the insulating layer 47 thus stops at the etch-stop layer 44. A subsequent etching step (
Next (
Next (
By appropriately modulating the etching conditions, the collar element 50 prevents entry of the metal into the trench 41. Further, the collar forms a sort of “mold” that enables definition, through the opening 58, of the tip-shaped or cusp-shaped cathode 60, which optimizes performance of the finished device. In fact, thanks to the shape of the collar 50, the cathode layer 60 does not penetrate sensibly into the trench 41 and forms a sharp portion 62 in the proximity of the opening of the trench 41 itself.
In the case where a device is to be formed in which the trench is in a condition of negative pressure or vacuum, deposition of the cathode layer 60 may take place in a high-vacuum environment, for example, with a pressure comprised between 10−3 and 10−8 torr, as example 10−5 torr.
Finally (
The method described and the finished device thus obtained present numerous advantages.
In fact, thanks to the presence of the restriction element, or collar, 50, the trench device 100 does not present intrusions of metal into the trench 41. Further, the cathode layer 60 has a tip-shaped portion 62 having an optimal shape for emission of charges during operation of the device 100.
Finally, it is clear that modifications and variations may be made to the method and to the device described and illustrated herein, without thereby departing from the scope of the present disclosure.
For instance, even though the example described refers to provision of a trench in a stack of layers, the same approach may be followed for providing openings and cavities even in single layers.
The trench may further have any shape.
As has been mentioned, the number of etching steps may vary according to the specific conditions. In the case of successive etches followed by washing, the etching steps may be carried out with different parameters. In particular, in the first etching step or steps, the parameters may be standard, with automatic removal of the by-products, if so desired.
The various embodiments described above can be combined to provide further embodiments. These and other changes can be made to the embodiments in light of the above-detailed description. In general, in the following claims, the terms used should not be construed to limit the claims to the specific embodiments disclosed in the specification and the claims, but should be construed to include all possible embodiments along with the full scope of equivalents to which such claims are entitled. Accordingly, the claims are not limited by the disclosure.
Number | Date | Country | Kind |
---|---|---|---|
102016000067595 | Jun 2016 | IT | national |