The present invention concerns a method for manufacturing a wear plate of a disc chipper, and it also concerns a wear plate of a disc chipper.
Disc chippers are generally used for producing wood chips to be used for pulp production. The knife disc of a disc chipper is equipped with knives attached thereto in radial direction, said knives cutting chips from a log against a fixed counter knife. In the sectors between the knives there are wear plates, against which the logs are fed. Continuous abrasion is exerted on the wear plates by the logs, and therefore the front edge of the wear plate has been plated with wear-resisting material. Other portions of the wear plates are made of high-tensile material with relatively low strength that can be worked easily. The knives are attached against the tapered wear plates by means of knife clamps. Percussion forces are exerted on the knives and via knives to the tapered tips of the wear plates by the logs during the chipping, whereby the forces tend to bend the tip portion of the wear plate. Because the surfaces of the traditional wear plates facing the knife and being used about until 1990, are of general construction steel by their hardness (hardness about HB 150), they do not always form an adequately strong support against the knife, and they gradually yield and bend. As a result of the yielding, a small gap arises between the knife and the wear plate, where fibres start to accumulate. The support of the knife is weakened by the transformation of the supporting surface. When the supporting surface of the knife is cambered, the moving knife clamp turns and causes change of the knife position, whereby the clearance between the knives and the counter knife varies between different knives positioned in the knife disc at the same time. Disc chip and its wear plates are known from application WO-A1-96/26817.
A known solution of the above problem is the “cassette system” developed after 1980, comprising elements to be supported against a hardened wear plate for fixing the knives. The most general cassette system known in the art is described i.e. in publication DE-A1-33 14 127 (Iggesund Tools). The cassette system comprises a plurality of machined elements, which naturally causes additional investment costs of the chipper. The cassette system also has typically more stages in changing of the knifes.
In the production, the blanks of the wear plates are pre-worked, after which the front surface is plated with wear-resisting material. Generally used for the plating is powder that is sprayed and melted (sintered) on the surface of the plate by means of heat treatment. Temperature of the melting oven is over 1000° C. In connection with the heat treatment, the wear plate blank usually encounters deformations to some extent that cannot be foreseen, whereby the most important dimensions of the wear plate in respect of the operation of the wear plate are machined only after the heat treatment.
In order to prevent permanent deformation of the surface of the wear plate facing the knife, the wear plate should be hardened. A problem with the heat treatment in connection with the hardening of the massive wear plate with a diameter of about 100 mm is changing of the dimensions of the wear plate, and that the fabricating of the wear plate is more difficult after the hardening. In addition, a throughout hardened wear plate is too brittle, and in cases where the chipper is damaged, it can fall to pieces and destroy the whole chipper. In a method of the present invention, the tip of the wear plate stressed by the knife is selectively hardened by heat treatment in connection with sintering, so that its strength and yield limit duplicate or triplicate. Due to the selective hardening, the toughness of the wear plate remains mainly good. One prominent advantage of the invention is that the focused selective hardening is inexpensive, because it is performed in connection with the heat treatment of the sintering.
The present invention and its details will be described in more detail in the following, with reference to the enclosed drawings, wherein
The wear plate 4 is attached to the knife disc with bolts 9, as shown in
As a result of the yielding of the tip portion 15 of the wear plate, a small gap arises between the surface 10 and the knife 3, where cuttings and wood fibres start to accumulate. When changing the knives, the attachment of the sharp knife it no more as firm. This causes also an allowance between the knife 3 and the clamp in point 23 when the knife bends according to the bending of the tip portion 15 of the wear plate, influenced by the chipping force component FN. Weakening of the firmness of the attachment is especially a problem with narrower knives, whereby the knife comprises the knife 3 and an additional piece 24, the connection 25 being flexible (
The knife can move or vibrate, which speeds up the deformation of the wear plate. When the support portion 13 of the wear plate wears and the positions of the surfaces 10 of the wear plates change, also the positions of the different knifes differ from each other. Then also the knife allowance V differs from one knife to another. As a result, the adjustment of the knife allowance is different and the chip quality declines. Big knife allowance brings about fine grains and long strings from the sapwood, detrimental to the further processing. Solution shown in
It is at present usual that the weight of the knives is reduced making them narrower. Thereby the problems with a narrow knife as shown in
For the point of view of the use of the chipper and the chip quality, however, it is advantageous, that the number of elements is low and the surface rubbing against the log has no jags or cavities. Additionally, narrow knifes are preferably used. These requirements have led to further developments of the present invention. The abovementioned requirements are met by means of a method in accordance with the present invention, wherein the tip 15 of the wear plate and the support 14 are hardened in connection with the sintering heat treatment. For that reason they endure the forces from the knife and support the knife better during the chipping. Also the problems with the permanent deformation of the tip of the wear plate are solved. Selective hardening does not prevent machining of the unhardened and soft back surface of the wear plate and does not cause embrittlement of the actual construction of the wear plate. The wear plate must have adequate toughness to prevent breakage of the wear plate in case of an accident. Stones or other undesirable material can accidentally end up into the chipper.
Temperature of the tip 15 of the wear plate during the hardening process is shown in
The quenching can also be performed with oil, quenching liquid or compressed air. Environmental aspects and handling problems must in that case be taken into consideration, and the fact that desired quick cooling and hardness is difficult to achieve.
It has been discovered by hardening tests, that decarburization occurs just quite at the surface of the hardened point, resulting that a thin surface layer of 1-3 mm is of softer material. The harder material is formed under the surface layer. Therefore machining for correcting the deformations occurring in the heat treatment for the part of the tip portion 15 and the support portion of the wear plate are easy and the hard surface will be brought out after a couple of millimetres of material has been removed. Deviations by form are smaller in these parts than in the back surface 18 of the wear plate, and they can be corrected within limits of the softer surface layer remained after hardening. Working after the hardening is performed as shown in
Supporting element for the knife 3 can also be formed of a part 23 separate from the wear plate, as shown in
Number | Date | Country | Kind |
---|---|---|---|
20030464 | Mar 2003 | FI | national |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/FI04/00074 | Feb 2004 | US |
Child | 11010279 | Dec 2004 | US |