The invention relates to a wire and a method for manufacturing a wire.
In order to make high-quality paper, the properties of paper stock have to be accurately measured and adjusted. In measuring the freeness of paper stock, the speed by which paper stock can be separated from water is empirically determined. Freeness depends on several factors, such as fibres, stock processing (mechanical/chemical, for example), the quantity of fines, temperature, consistency, and the measuring device.
Most common methods for measuring freeness are CSF (Canadian Standard Freeness) and the Schopper-Riegler method. In both freeness-measuring methods, a sample is filtered through a wire into a funnel comprising a constant-flow valve and a lateral branch. The water removed from the lateral branch is measured and the amount of water obtained corresponds to freeness. The measuring is typically performed manually.
What causes problems in such measurings is the wire. According to standard, the wire includes holes with a diameter of 0.51 mm and the density of the holes is 625 holes per square inch, which corresponds to approximately 97 holes per square centimetre. The holes in a standard wire are made using a mechanical punching machine. In punching, a cutting edge is used to punch holes into the wire. Hence, the different sides of the wire become different. When punching is carried out, the wire bends, and in the punching direction, a sharp edged burr remains around the holes on the lower surface of the wire. Consequently, the use of the wire becomes complicated and the chance for errors increases, since in freeness measuring the wire has to be placed so that the side that provides burr remains downwards. In addition, the spread of the distances between the holes and the diameters of the holes is large, which together with the above-mentioned problems result in that different wires provide significantly deviating freeness results for the same sample. Attempts have been made to reduce the deviations in measurings carried out with different wires by comparing the wires to what is known as a master wire. However, the problem cannot be solved in this way.
It is an object of the invention to provide an improved method for manufacturing a wire, and a wire enabling to measure freeness accurately and irrespective of the side on which the wire is placed for measuring. This is achieved with the method for manufacturing a wire used in standard freeness measuring of paper stock. The method comprises: directing a means for producing holes, which is something else than a solid, on a wire plate at areas intended for desired holes; and providing the wire plate with such holes using the means for producing holes.
The invention also relates to a wire used in standard freeness measuring of paper stock. Furthermore, the wire is made by directing a means for producing holes, which is something else than a solid, on a wire plate at areas intended for desired holes; and providing the wire plate with such holes using the means for producing holes.
Preferred embodiments of the invention are disclosed in the dependent claims.
The invention is based on the idea that the wire holes are made into the wire using a means, which is not a solid. Thus, the wire holes are made equal on both sides of the wire and no burr remains on the wire. In addition, during the manufacturing stage the wire is not mechanically subjected to strain.
The manufacturing method and the wire of the invention provide several advantages. The wire is alike on both sides thereof, and therefore the same result is obtained in the freeness measuring irrespective of which side of the wire is placed downwards. In addition, different wires provide an equal freeness result from the same sample. Furthermore, the manufactured wires need no longer be compared with what is known as a master wire, since the wires can be made exactly alike.
In the following, the invention will be described in more detail by means of the preferred embodiments with reference to the accompanying drawings, in which
Let us first take a closer look at prior art freeness measurings. The CSF measuring method shown in
In the standard basic solution, the water flows further into a funnel comprising a constant flow nozzle at the bottom of the funnel and a lateral tube in the bottom part of the funnel. A constant volume (24.2 ml) remains in the funnel between the constant flow nozzle (constant flow 8.83 ml/s) and the lateral tube. When water flows from the measuring container into the funnel, some of the water flows out through the constant flow nozzle, a constant volume (24.2 ml) of water is collected between the constant flow nozzle and the lateral tube, and finally water flows out through the lateral tube. In freeness measuring, the amount of water that has flown out through the lateral tube is measured using a measuring glass and said amount of water corresponds to freeness. The measuring is typically carried out manually.
Alternatively, freeness can also be measured in an automated manner. Thus, a measuring chamber 10 in the measuring device is attached to a supporting structure 40. In the beginning of the measuring, the measuring chamber 10 is filled with paper stock to be measured. Filling may either be carried out manually by opening an upper lid 34 using a lever 32 and pouring paper stock into the measuring chamber 10 or automatically from a tube 22. However, manual filling is not worth using in industrial processes and the manual opening mechanism of the upper lid is therefore not relevant. When filling is carried out through the tube 22, an automatic data processing unit 30, for instance a computer comprising a microprocessor, provides a command to open a valve 26, whereby paper stock flows into the measuring chamber 10. When the measuring chamber 10 is filled, a lower lid 16 is opened using an opening mechanism 20. After opening the lower lid 16, an air valve 14 is opened after a predetermined delay of typically 5 seconds at time instant T0. Opening the lower lid 16, measuring the delay and controlling the opening of the air valve 14 are accurately carried out by the automatic data processing unit 30. The measuring device comprises measuring means 12 for measuring the removal of liquid from the measuring chamber as a function of time after opening the air valve. Liquid flows through a wire 18 leaving the solid in the paper stock on the wire 18. The drainage of liquid is measured with a sensor 12 comprising for instance a pair of optic transmitters/receivers or one based on ultrasound. The sensor 12 is connected to the automatic data processing unit 30. Measuring is carried out for example in such a manner that the optic or acoustic transmitter transmits a measuring signal towards the surface of the paper stock, from where the signal is reflected to the optic or acoustic receiver. When the location of the transmitter and receiver is known as well as the propagation time of the signal from the transmitter to the receiver, the height of the surface can be determined. The sensor 12 feeds the measuring data concerning the propagation time of the signal into the automatic data processing unit 30, which determines the flow rate. The automatic data processing unit 30 establishes by means of the collected measuring data the freeness F in such a manner that the water in the paper stock is allowed to flow through the wire 18 at time instant T0. When the flow starts at time instant T0 the decrease of paper stock is measured in the measuring chamber 10 as a function of time, and such a time instant T1 is searched for, in which the decrease of paper stock substantially corresponds to a previously known flow rate vc. Finally, the freeness F is determined as a function of the amount of liquid drained from the measuring chamber 10 by time instant T1. This standard freeness measuring, into which the wire of the solution is applicable, is described in more detail in Finnish patent 104855.
A method known as the Schopper-Riegler method is described in publication SCAN-C 19:65, Scandinavian pulp, paper and board, Testing committee, approved 1964, which is incorporated herein by reference (no Figures of this method are shown). According to this standard method, a known quantity of paper stock is first poured on a locking cone, which is opened after a predetermined period of time (5 s). The stock is then filtered through a wire and a fibre matting piling on the wire into a funnel provided with an opening at the bottom and side thereof. Water flows out through the bottom opening at a constant flow rate [1000 ml(149 s±1)≈6.71 ml/s]. A constant volume (7.5 ml-8.0 ml) remains between the bottom opening and the side opening. The amount of water flowing through the side opening corresponds to the freeness measured in SR units so that 0 ml corresponds to 100 SR units, 1000 ml corresponds to 0 SR units and one SR unit thus corresponds to 10 ml. The SR and CSF scales are opposite to one another, meaning that a high SR value corresponds to a low CSF value. This measuring is also generally carried out manually.
The wire required in freeness measuring may be a perforated plate. In accordance with the presented solution, the wire required in standard measuring is made by directing a means for producing holes, which is something else than a solid, on a wire plate at areas intended for desired holes, and the holes on the wire plate are provided using the means for producing holes. The methods may include etching, laser cutting or water cutting, in which the means producing holes is a corrosive liquid, radiation or a liquid jet. The wire can also be made using two or more of the manufacturing methods. Since the means employed for producing holes is not a solid, neither the wire plate nor the holes to be provided will be deformed when the holes are made. The wire is made of a plate-like object, which may be metal, plastic, glass, ceramic material or the like. Metals that can be used include for instance copper and acid steel. The wire plate may generally be made of any material, for which the different stages of the manufacturing process and freeness measuring can be carried out.
Let us first take a closer look at etching shown in
Etching provides holes of desired sizes extremely accurately, and the spread of the distances between the holes is very small. Differences between the holes (for instance between 10 holes) on known wires, measured using triangulation, range between 1.05 mm and 1.19 mm, whereas a corresponding spread between holes on the wires according to the solution is difficult to detect, while the spread is at the most ±0.02 mm. Etching hardly puts any strain upon the wire plate, and the shape of the wire plate therefore remains unchanged. It is particularly important that no burrs are formed. A wire manufactured in this way can be placed for standard measuring on either side.
Let us now take a closer look at laser cutting shown in
Let us further take a closer look at water cutting shown in
Laser and water cutting can be combined to take place simultaneously, whereby laser water cutting is concerned. In such a case, the laser beam is directed to the wire plate either along a water jet or from a different direction with respect to the water jet. Both the water jet and the laser beam can together cut the holes on the wire plate. Alternatively or in addition to, the water jet may function as a means for cooling the wire plate, thus reducing the strain of the wire plate and the possible changes in appearance. When the water jet operates merely as cooling means, cutting is performed using the laser beam.
Instead of laser and water cutting or in addition thereto, the wire may be manufactured using electrical discharge machining (EDM) described in
The wire can also be treated mechanically. Such measures include cutting, grinding and polishing.
Even though the invention has above been explained with reference to the example in the accompanying drawings, it is apparent that the invention is not restricted thereto but can be modified in various ways within the scope of the inventive idea disclosed in the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
20020915 | May 2002 | FI | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/FI03/00373 | 5/14/2003 | WO | 8/4/2005 |