Method for manufacturing a wire stent coated with a biocompatible fluoropolymer

Information

  • Patent Grant
  • 7000305
  • Patent Number
    7,000,305
  • Date Filed
    Monday, November 24, 2003
    21 years ago
  • Date Issued
    Tuesday, February 21, 2006
    18 years ago
Abstract
A method for manufacturing a stent includes heating a plurality of wire strands to impart a desired shape to the wire strands, coating each wire strand with a biocompatible polymer in an extruder to produce a plurality of coated wire strands, and interlacing the coated wire strands to form a stent.
Description
BACKGROUND OF THE INVENTION

The present invention relates to wire stents and related vascular devices. More particularly, it refers to a stent or other vascular positioned device containing a wire coated with a biocompatible fluoropolymer.


My prior application includes stents made from interwoven groups of yarn filaments containing a wire. U.S. Pat. No. 6,161,399 issued Dec. 19, 2000 and entitled, “Process for Manufacturing a Wire Reinforced Monolayer Fabric Stent” is hereby incorporated by reference. In addition, U.S. Pat. No. 5,961,545 describes wire stents immobilized longitudinally between tubes of expandable polytetrafluoroethylene. U.S. Pat. No. 5,957,954 describes braiding a stent and a polytetrafluoroethylene textile strand sleeve together in an axial alignment. U.S. Pat. No. 6,015,432 describes an endovascular tube made from woven graft material with a wire employed in openings in the weave. U.S. Pat. No. 5,741,325 describes a self-expanding intraluminal prosthesis containing interwoven fibers including reinforcing wire. U.S. Pat. No. 5,607,478 describes how to make a prosthesis from an expanded polytetrafluoroethylene (ePTFE) tube with a winding of PTFE.


It also is well known in the prior art to coat insulated wire with foamed fluoropolymer insulation as described in U.S. Pat. No. 5,770,819. None of these prior art disclosures teach how to coat a wire used in a prosthesis with a porous expanded PTFE to create uniform expansion of the prosthesis.


SUMMARY OF THE INVENTION

I have now invented a process to improve my stent of U.S. Pat. No. 6,161,399 by coating the plurality of wire strands of the stent with a porous expanded PTFE. The addition of expanded PTFE to the wire strand reduces platelet adhesion to the stent product. Restenosis will not occur since tissue and cells will not adhere to the expanded PTFE.


The process of this invention is achieved by pretreating a spool of wire to achieve a predetermined shape to the wire and returning the treated wire to its spool. The wire is then fed into an ePTFE extrusion machine where the wire feed is regulated depending on the speed of the extrusion machine. The wire is fed first into a nozzle of the extruder, the nozzle having a concentric opening in which the ePTFE is heated, sintered and then extruded. A laser determines the thickness of the ePTFE layer to maintain uniformity on the wire. The ePTFE coated wire is then respooled and interlaced by braiding or knitting with other coated wire. Various angles are formed with the coated wire which determines the radial and axial compressibility of the resulting stent.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention can be best understood by those having ordinary skill in the art by reference to the following detailed description when considered in conjunction with the accompanying drawings in which:



FIG. 1 is a flow diagram showing the process of this invention;



FIG. 2 shows the wire preheated;



FIG. 3 shows the application of the fluoropolymer to the wire;



FIG. 4 is a longitudinal section of the fluoropolymer coated wire;



FIG. 5 is a cross-section of the coated wire of FIG. 4 along line 55;



FIG. 6 shows the interlacing of the coated wire in a braiding machine to produce a tubular stent;



FIG. 7 is a side view of a coiled coated wire strand interlaced into the tubular stent; and



FIG. 8 is a front view of a stent prepared by the process of this invention.





DETAILED DESCRIPTION OF THE INVENTION

Throughout the following detailed description, the same reference numerals refer to the same element in all figures.


Referring to FIG. 1, an expandable wire 10 suitable for use in a stent is chemically treated to remove surface oxidation and is then shaped and preheated in an oven 12 as shown in FIG. 2 to impart a desired shape to the wire. Alternatively, a plurality of wire strands are introduced in the oven simultaneously, heat set, then removed and put back on individual spools. These spools are sent to the coating step shown in FIG. 3. Alternatively, as shown in FIG. 1, the fluoropolymer can be adhesively applied to the wire 10.


Typical wire 10 for use in this invention is nickel-titanium alloy known as NITINOL™, stainless steel, titanium, tungsten, platinum, gold, silver or other like malleable metal that will retain a memory after heat treatment.


After heat treating NITINOL™ between 500–600 degrees C. for two to ten minutes, the NITINOL™ wire 10 is respooled 14 as shown in FIG. 2 and is then passed through an extruder 16 as shown in FIG. 3. Individual wire which is not heat set is braided into the desired shape and then heat set at the above temperature for substantially the same time period. The wire is then removed from the braid and heat set again. After coating, the wire is rebraided back to its original shape. The extruder 16 contains porous expanded PTFE at about 250 degrees F., which is applied to the wire to a thickness of 1–8 μm as shown in FIGS. 3 to 5. The extruder 16 has a conical opening 18 through which the wire 10 passes. The speed of the wire is regulated depending on the speed of the extrusion process to provide a uniform coating of the fluoropolymer 19 on the wire 10. The ePTFE coating 19 fits snugly around the wire with no wire surface exposed. The ePTFE has a porous structure as described in U.S. Pat. No. 5,607,478, hereby incorporated by reference. The porosity of the ePTFE surface is between 10 to 260 microns. The porosity can vary between the outer and inner surface with the outer surface having a larger porosity. It is preferred to have the same porosity throughout the coating.


The wire containing the fluoropolymer coating is then respooled 22 and used in the knitting or braiding machine 20 shown in FIG. 6 to produce a stent 30 as shown in FIG. 8. The stent 30 has a tubular body 11 having a generally circular open ends 13 and 15. Body 11 consists of interlaced wire strands, each wire strand coated with ePTFE. Other biocompatible fluoropolymers such as PTFE and FEP can be substituted for the ePTFE. However, ePTFE is preferred for the wire coating.


The stent 30 is formed by two dimensional braiding in which the coated wire strands are crossed on top of each other so that strands in the final stent product are tightly held together. Depending on the type of crossing pattern employed and number of coated wire strands fed into the braid, the resulting braid will vary in its properties, i.e., axial and radial strength and compressibility. In contrast, three dimensional braiding as used in some prior art stents constitute materials superimposed concentrically over each other. This latter type of stent has a substantially thicker wall than the present invention of a braided two dimensional stent.


Although the preferred stent of the present invention employs about twenty-four interlaced coated wires represented by wire strands 23, 25, 27 and 32 in FIG. 6, stent 30 is not limited thereto and can be configured with multiple coated wires of more or less than twenty-four strands. Thirty-six or more coated wire strands would be acceptable.


Stent 30 of the present invention is made using a braiding or knitting machine 20 schematically depicted in FIG. 6. FIG. 6 is illustrative of the inventive knitting machine used to create one of the stents of the present invention. The preferred stent, as in FIG. 8, would be made from knitting machine 20 employing about four coated wire strands.


As seen in FIG. 6, knitting machine 20 includes an intake section 21 receiving strands 23, 25, 32 and 27 of coated wire from three spools of wire 29, 31, 22 and 33, respectively. Spool of wire 22 has a braking mechanism 39. An out take 41 of the knitting machine 20 is seen to have, emanating therefrom, the knitted stent 30 having the coated wire 23, 25, 32 and 27 spiraling therethrough.


In the preferred method of knitting the stent 30, the spool 22 is caused to supply coated wire 32 at a slower supply rate than is the case for the coated wire strands 23, 25 and 27. For this purpose, the brake mechanism 39 is activated to a desired degree of braking force to slow down the supply of coated wire 32 to a ratio of, for example, 1:4 as compared to the speed of supply of the strands 23, 25 and 27 of coated wire.


As a result of this knitting technique, a stent 30 is woven having a coated wire strand 32 braided about the other wire strands, locking the wire together and thereby providing a stent with increased axial and radial strength and resistance to restenosis and platelet adhesion to the stent 30.


In the braiding of the coated wire strands, the wire strands are crossed on top of each other so that the coating is tightly held because of the crossing pattern to produce a stent with low porosity. The crossing pattern determines the appearance of the surface, radial strength of the stent graft and the compressibility in both the radial and axial direction. Compressibility in the longitudinal or axial direction provides a low profile for the stent as it is introduced into a body lumen.


The coated wire strands determine the wall thickness for a particular diameter of the stent. For example, in a 4 mm coated wire the feed ratio of strands to be braided are different from the feed ratios that are required for a 6 mm stent graft. The preferred number of wire strands insures a small enough stent so it can be moved through the smallest possible hole. Variations in the coated metal strand thickness or shape also alters the thickness of the stent wall diameter.


This invention produces a stent that may or may not have areas of blood leakage, but does provide for passage of ions necessary for proper lumen wall function. The surface coverage is necessary to control areas of higher leakage of blood. The stent should have a uniform micro porous wall which determines the success of an implant. Blood needs to sweat through the holes, but not leak through the walls.


Compliance of the stent is a factor directly related to the porosity. The more porous the stent graft, the more compliant it is. An optimal compliance is sought which is essential to impart the pulsable nature of the natural arterial wall into the prosthesis.


The coated wire strands can be introduced into the braid in separate spools or they can be mixed together in one spool and then introduced into the process. Alternatively, the coated wire strands could be braided into a two strand mixture and then fed by several spools to form a braid. A wire strand 25 can be coiled as seen in FIG. 7.


The stent 30 also could have fabric incorporated between the coated wire braided structure. The wall thickness of the stent is such that in the compressed state, a double wall thickness is at least one-fifth an end diameter of the stent. For example, if the final end diameter of the stent is 6 mm, the compressed double wall thickness is less than 1.20 mm.


If fabric material is employed, such fabric material can be, for example, polyester, polypropylene, polyethylene, polyurethane, polytetrafluoroethylene or other natural fabric materials. Such strands of yarn can be monofilament or multi-filament. If monofilament strands are used, the strands can be twisted or wound prior to being fed into the knitting machine 20. The coated wire strands can have a diameter of approximately 0.004 inches and will have a greater thickness than that of the yarn.


As shown in FIG. 1 on the right side, an alternative process involves no pretreatment of the wire and the ePTFE is co-extruded with the wire and an adhesive agent. The co-extruded wire/ePTFE is then heat treated to activate the adhesive and the ends are treated before placing back on the rolls for use in the braiding or knitting machine to make a stent.


The ends of the coated wire can be terminated using a biocompatible glue (the coating is glued to the wire), ultrasonically welded, or the wire can be looped around and welded such that there is a small loop at the ends. This prevents the fraying of the wire and also prevents the coating from fraying. When the ends are looped around and welded, there are no sharp ends of the metal and this prevents any injury or trauma to the vessel wall.


The braided or knitted stent fabricated from coated wires as described above has radial and longitudinal compressibility. When the stent is elongated, it returns to an original relaxed state which is the final diameter of the stent. The stent is elongated and a sheath or a covering mechanism is loaded on top of the stent. This keeps the stent in a compressed state. The entire system is then introduced into a human body cardiovascular, vascular or non-vascular system and the sheath is slowly withdrawn either by pulling the sheath backwards or by moving the stent forwards. The stent slowly expands to its relaxed state and is implanted at a suitable site. If the stent is not implanted at the right area of the vascular system, it can be withdrawn again into the sheath, provided the complete stent has not been deployed yet. The sheath has also an inner core on which the coated stent is compressed and the sheath introduced on top of it. This inner core has four radiopaque markers on it which show the operator on an X-ray image the compressed length of the stent and also the relaxed length of the stent. Thus, the operator is able to clearly determine the length of the stent versus the diseased section of the vessel.


The above description has described specific structural details embodying the invention. However, it will be within one having skill in the art to make modifications without departing from the spirit and scope of the underlying inventive concept of this invention. The inventive concept is not limited to the structure and process described, but includes modifications and equivalents.

Claims
  • 1. A method for making a stent comprising: heat treating a plurality of wire strands;coating the wire strands with a biocompatible fluoropolymer in an extruder to produce a plurality of coated wire strands;spooling the coated wire strands; andinterlacing the coated wire strands from separate spools into a tightly held together monolayer integrated tubular shape, the tubular shape adapted to have axial and radial compressibility for insertion into a cardiovascular, vascular or non-vascular system of a human body.
  • 2. The method as defined in claim 1 wherein the wire strands include a material selected from the group consisting of stainless steel, tungsten, titanium, nickel-titanium alloy, gold, silver or a combination thereof.
  • 3. The method as defined in claim 1 wherein the fluoropolymer is selected from the group consisting of PTFE, ePTFE, FEP or a combination thereof.
  • 4. The method as defined in claim 1 wherein at least one wire strand is employed in a coil pattern.
  • 5. The method as defined in claim 1 wherein interlacing the coated wire strands is carried out in a knitting machine.
  • 6. The method as defined in claim 5 wherein a brake mechanism on a spool supplying one coated wire strand causes the spool to supply such coated wire stand at a slower rate than other spools supplying the other coated wire strands.
  • 7. The method as defined in claim 1 wherein textile strands are interlaced between the coated wire strands.
  • 8. The method as defined in claim 7 wherein the textile strands include a material selected from the group consisting of polyester, polypropylene, polyethylene, polyurethane, polytetrafluoroethylene or a combination thereof.
  • 9. The method as defined in claim 1 wherein at least one wire strand is preheated in an oven to impart an intended shape prior to coating.
  • 10. The method as defined in claim 1 wherein the tightly held together monolayer integrated tubular shape allows for the exuding of blood for proper lumen wall function.
  • 11. A method for making a stent comprising: heating a plurality of wire strands to impart a desired shape to the wire strands;coating each wire strand with a biocompatible polymer in an extruder to produce a plurality of coated wire strands; andinterlacing the coated wire strands to form a stent.
  • 12. The method as defined in claim 11 further including regulating the speed of the wire strands in the extruder to provide a uniform coating.
  • 13. The method as defined in claim 12 wherein interlacing includes braiding the coated wire strands in a braiding machine.
  • 14. The method as defined in claim 13 further including spooling the coated wire strands onto spools, and wherein braiding includes removing the coated wire strands from the spools while braiding the coated wire strands in the braiding machine.
  • 15. The method as defined in claim 14 further including regulating the speed of at least one of the spools at a slower rate than other spools.
  • 16. The method as defined in claim 15 further including incorporating a fabric material between the braided, coated wire strands.
  • 17. The method as defined in claim 16 further including preparing ends of the wire strands to prevent fraying.
  • 18. The method as defined in claim 11 wherein interlacing includes knitting the coated wire strands in a knitting machine.
  • 19. A method for making a stent comprising: coating a plurality of wire strands with a biocompatible polymer and an adhesive in an extruder to produce a plurality of coated wire strands;heating the coated wire strands to activate the adhesive; andinterlacing the coated wire strands to produce a stent.
  • 20. A method for making a stent comprising: interlacing a plurality of wire strands into a desired shape;heating the wire strands in the desired shape;removing the wire strands from the desired shape;coating the wire strands with a biocompatible polymer; andinterlacing the wire strands to form a stent.
CROSS-REFERENCE TO RELATED APPLICATION

This application is a continuation of U.S. application Ser. No. 09/672,422, filed Sep. 28, 2000 now U.S. Pat. No. 6,652,574. Benefit of the earlier filing date is claimed in accordance with 35 U.S.C. §120.

US Referenced Citations (127)
Number Name Date Kind
2524661 Harder et al. Oct 1950 A
3466166 Levinstein et al. Sep 1969 A
3562024 Smith Feb 1971 A
3657744 Ersek Apr 1972 A
4023557 Thorne et al. May 1977 A
4281419 Treace Aug 1981 A
4300244 Bokros Nov 1981 A
4409172 Ward, Jr. et al. Oct 1983 A
4441215 Kaster Apr 1984 A
4465481 Blake Aug 1984 A
4573242 Lankton et al. Mar 1986 A
4600446 Torisaka et al. Jul 1986 A
4640320 Avison et al. Feb 1987 A
4655771 Wallsten Apr 1987 A
4669474 Barrows Jun 1987 A
4718907 Karwoski et al. Jan 1988 A
4719916 Ravo Jan 1988 A
4732152 Wallsten et al. Mar 1988 A
4733665 Palmaz Mar 1988 A
4752054 Jonsson Jun 1988 A
4762128 Rosenbluth Aug 1988 A
4776337 Palmaz Oct 1988 A
4813416 Pollak et al. Mar 1989 A
4816339 Tu et al. Mar 1989 A
4866816 Caveney Sep 1989 A
4877030 Beck et al. Oct 1989 A
4878906 Lindemann et al. Nov 1989 A
4879135 Greco et al. Nov 1989 A
4902290 Fleckenstein et al. Feb 1990 A
4950285 Wilk Aug 1990 A
4986831 King et al. Jan 1991 A
4990158 Kaplan et al. Feb 1991 A
5007926 Derbyshire Apr 1991 A
5059166 Fischell et al. Oct 1991 A
5059211 Stack et al. Oct 1991 A
5061276 Tu et al. Oct 1991 A
5064435 Porter Nov 1991 A
5078726 Kreamer Jan 1992 A
5078736 Behl Jan 1992 A
5084065 Weldon et al. Jan 1992 A
5100429 Sinofsky et al. Mar 1992 A
5104403 Brotzu et al. Apr 1992 A
5107852 Davidson et al. Apr 1992 A
5116360 Pinchuk et al. May 1992 A
5123917 Lee Jun 1992 A
5147385 Beck et al. Sep 1992 A
5156620 Pigott Oct 1992 A
5156623 Hakamatsuka et al. Oct 1992 A
5158548 Lau et al. Oct 1992 A
5163951 Pinchuk et al. Nov 1992 A
5180366 Woods Jan 1993 A
5192307 Wall Mar 1993 A
5192310 Herweck et al. Mar 1993 A
5192311 King et al. Mar 1993 A
5195984 Schatz Mar 1993 A
5197977 Hoffman, Jr. et al. Mar 1993 A
5217026 Stoy et al. Jun 1993 A
5234456 Silvestrini Aug 1993 A
5234457 Andersen Aug 1993 A
5258020 Froix Nov 1993 A
5279594 Jackson Jan 1994 A
5282823 Schwartz et al. Feb 1994 A
5282824 Gianturco Feb 1994 A
5289831 Bosley Mar 1994 A
5290271 Jernberg Mar 1994 A
5304220 Maginot Apr 1994 A
5306286 Stack et al. Apr 1994 A
5330500 Song Jul 1994 A
5366504 Andersen et al. Nov 1994 A
5383926 Lock et al. Jan 1995 A
5387235 Chuter Feb 1995 A
5389106 Tower Feb 1995 A
5456713 Chuter Oct 1995 A
5507771 Gianturco Apr 1996 A
5522881 Lentz Jun 1996 A
5556414 Turi Sep 1996 A
5607478 Lentz et al. Mar 1997 A
5628787 Mayer May 1997 A
5630840 Mayer May 1997 A
5632840 Campbell May 1997 A
5649977 Campbell Jul 1997 A
5674241 Bley et al. Oct 1997 A
5674276 Andersen et al. Oct 1997 A
5679470 Mayer Oct 1997 A
5700285 Myers et al. Dec 1997 A
5700286 Tartaglia et al. Dec 1997 A
5718159 Thompson Feb 1998 A
5725570 Heath Mar 1998 A
5741325 Chaikof et al. Apr 1998 A
5766204 Porter et al. Jun 1998 A
5770819 Mehan Jun 1998 A
5800511 Mayer Sep 1998 A
5824046 Smith et al. Oct 1998 A
5824077 Mayer Oct 1998 A
5836925 Soltesz Nov 1998 A
5836962 Gianotti Nov 1998 A
5843158 Lenker et al. Dec 1998 A
5843166 Lentz et al. Dec 1998 A
5849037 Frid Dec 1998 A
5855600 Alt Jan 1999 A
5858556 Eckert et al. Jan 1999 A
5910168 Myers et al. Jun 1999 A
5913896 Boyle et al. Jun 1999 A
5927345 Samson Jul 1999 A
5957954 Badalamenti et al. Sep 1999 A
5961545 Lentz et al. Oct 1999 A
5980531 Goodin et al. Nov 1999 A
5980564 Stinson Nov 1999 A
6015432 Rakos et al. Jan 2000 A
6027779 Campbell et al. Feb 2000 A
6053943 Edwin et al. Apr 2000 A
6077296 Shokoohi et al. Jun 2000 A
6090134 Tu et al. Jul 2000 A
6161399 Jayaraman Dec 2000 A
6162537 Martin et al. Dec 2000 A
6165211 Thompson Dec 2000 A
6187039 Hiles et al. Feb 2001 B1
6214040 Jayaraman Apr 2001 B1
6342068 Thompson Jan 2002 B1
6357104 Myers Mar 2002 B1
6364903 Tseng et al. Apr 2002 B1
6364904 Smith Apr 2002 B1
6475235 Jayaraman Nov 2002 B1
6547814 Edwin et al. Apr 2003 B1
6592617 Thompson Jul 2003 B1
20020065545 Leonhardt et al. May 2002 A1
20020161392 Dubrul Oct 2002 A1
Foreign Referenced Citations (3)
Number Date Country
WO 9600103 Jan 1996 WO
WO 9740755 Nov 1997 WO
WO 9932051 Jul 1999 WO
Related Publications (1)
Number Date Country
20040133272 A1 Jul 2004 US
Continuations (1)
Number Date Country
Parent 09672422 Sep 2000 US
Child 10720552 US