Claims
- 1. A method for manufacturing an aluminum alloy fin material for brazing, comprising the steps of:forming an ingot sheet, by casting a molten liquid of an aluminum alloy by a twin-roll continuous cast-rolling method; and cold-rolling the ingot sheet, to prepare the fin material, with the aluminum alloy comprising more than 0.6% by mass, and 1.8% by mass or less, of Mn, more than 1.2% by mass, and 2.0% by mass or less, of Fe, and more than 0.6% by mass, and 1.2% by mass or less, of Si, with the balance being Al and inevitable impurities, wherein said twin-roll continuous cast-rolling is applied under the conditions of a molten liquid temperature of 700 to 900° C., a roll press load of 5,000 to 15,000 N per 1-mm width of the ingot sheet, a casting speed of 500 to 3,000 mm/min, and a thickness of the ingot sheet of 2 to 9 mm, and wherein two times or more of intermediate annealing are applied midway in said cold-rolling process, with said intermediate annealing including final intermediate annealing with a batch heating furnace, in a temperature range of 300 to 450° C., and at a temperature that does not allow recrystallization to complete, thereby adjusting the rolling ratio in the cold-rolling, after the final intermediate annealing, to 10 to 60%.
- 2. The method for manufacturing an aluminum alloy fin material for brazing as claimed in claim 1, wherein said intermediate annealing, except for the final annealing, is applied using a heating furnace.
- 3. An aluminum alloy fin material for brazing, wherein the crystalline texture of the fin material, which is obtained by the manufacturing method as claimed in claim 1, comprises a fibrous texture.
- 4. A method for manufacturing an aluminum alloy fin material for brazing, comprising the steps of:forming an ingot sheet, by casting a molten liquid of an aluminum alloy by a twin-roll continuous cast-rolling method; and cold-rolling the ingot sheet, to prepare the fin material, with the aluminum alloy comprising more than 0.6% by mass, and 1.8% by mass or less, of Mn, more than 1.2% by mass, and 2.0% by mass or less, of Fe, and more than 0.6% by mass, and 1.2% by mass or less, of Si, as well as at least one of Zn of 3.0% by mass or less, In of 0.3% by mass or less, and Sn of 0.3% by mass or less, with the balance being Al and inevitable impurities, wherein said twin-roll continuous cast-rolling is applied under the conditions of a molten liquid temperature of 700 to 900° C., a roll press load of 5,000 to 15,000 N per 1-mm width of the ingot sheet, a casting speed of 500 to 3,000 mm/min, and a thickness of the ingot sheet of 2 to 9 mm, and wherein two times or more of intermediate annealing are applied midway in said cold-rolling process, with said intermediate annealing including final intermediate annealing with a batch heating furnace, in a temperature range of 300 to 450° C., and at a temperature that does not allow recrystallization to complete, thereby adjusting the rolling ratio in the cold-rolling, after the final intermediate annealing, to 10 to 60%.
- 5. The method for manufacturing an aluminum alloy fin material for brazing as claimed in claim 4, wherein said intermediate annealing, except for the final annealing, is applied using a heating furnace.
- 6. An aluminum alloy fin material for brazing, wherein the crystalline texture of the fin material, which is obtained by the manufacturing method as claimed in claim 4, comprises a fibrous texture.
- 7. A method for manufacturing an aluminum alloy fin material for brazing, comprising the steps of:forming an ingot sheet, by casting a molten liquid of an aluminum alloy by a twin-roll continuous cast-rolling method; and cold-rolling the ingot sheet, to prepare the fin material, with the aluminum alloy comprising more than 0.6% by mass, and 1.8% by mass or less, of Mn, more than 1.2% by mass, and 2.0% by mass or less, of Fe, and more than 0.6% by mass, and 1.2% by mass or less, of Si, as well as at least one of Cu of 0.3% by mass or less, Cr of 0.15% by mass or less, Ti of 0.15% by mass or less, Zr of 0.15% by mass or less, and Mg of 0.5% by mass or less, with the balance being Al and inevitable impurities, wherein said twin-roll continuous cast-rolling is applied under the conditions of a molten liquid temperature of 700 to 900° C., a roll press load of 5,000 to 15,000 N per 1-mm width of the ingot sheet, a casting speed of 500 to 3,000 mm/min, and a thickness of the ingot sheet of 2 to 9 mm, and wherein two times or more of intermediate annealing are applied midway in said cold-rolling process, with said intermediate annealing including final intermediate annealing with a batch heating furnace, in a temperature range of 300 to 450° C., and at a temperature that does not allow recrystallization to complete, thereby adjusting the rolling ratio in the cold-rolling, after the final intermediate annealing, to 10 to 60%.
- 8. The method for manufacturing an aluminum alloy fin material for brazing as claimed in claim 7, wherein said intermediate annealing, except for the final annealing, is applied using a heating furnace.
- 9. An aluminum alloy fin material for brazing, wherein the crystalline texture of the fin material, which is obtained by the manufacturing method as claimed in claim 7, comprises a fibrous texture.
- 10. A method for manufacturing an aluminum alloy fin material for brazing, comprising the steps of:forming an ingot sheet, by casting a molten liquid of an aluminum alloy by a twin-roll continuous cast-rolling method; and cold-rolling the ingot sheet, to prepare the fin material, with the aluminum alloy comprising more than 0.6% by mass, and 1.8% by mass or less, of Mn, more than 1.2% by mass, and 2.0% by mass or less, of Fe, and more than 0.6% by mass, and 1.2% by mass or less, of Si, at least one of Zn of 3.0% by mass or less, In of 0.3% by mass or less, and Sn of 0.3% by mass or less, as well as at least one of Cu of 0.3% by mass or less, Cr of 0.15% by mass or less, Ti of 0.15% by mass or less, Zr of 0.15% by mass or less, and Mg of 0.5% by mass or less, with the balance being Al and inevitable impurities, wherein said twin-roll continuous cast-rolling is applied under the conditions of a molten liquid temperature of 700 to 900° C., a roll press load of 5,000 to 15,000 N per 1-mm width of the ingot sheet, a casting speed of 500 to 3,000 mm/min, and a thickness of the ingot sheet of 2 to 9 mm, and wherein two times or more of intermediate annealing are applied midway in said cold-rolling process, with said intermediate annealing including final intermediate annealing with a batch heating furnace in a temperature range of 300 to 450° C., and at a temperature that does not allow recrystallization to complete, thereby adjusting the rolling ratio in the cold-rolling, after the final intermediate annealing, to 10 to 60%.
- 11. The method for manufacturing an aluminum alloy fin material for brazing as claimed in claim 10, wherein said intermediate annealing, except for the final annealing, is applied using a heating furnace.
- 12. An aluminum alloy fin material for brazing, wherein the crystalline texture of the fin material, which is obtained by the manufacturing method as claimed in claim 10, comprises a fibrous texture.
- 13. A method for manufacturing an aluminum alloy fin material for brazing, comprising the steps of:forming an ingot sheet, by casting a molten liquid of an aluminum alloy by a twin-roll continuous cast-rolling method; and cold-rolling the ingot sheet, to prepare the fin material, with the aluminum alloy comprising more than 0.6% by mass, and 1.8% by mass or less, of Mn, more than 1.2% by mass, and 2.0% by mass or less, of Fe, and more than 0.6% by mass, and 1.2% by mass or less, of Si, with the balance being Al and inevitable impurities, wherein said twin-roll continuous cast-rolling is applied under the conditions of a molten liquid temperature of 700 to 900° C., a roll press load of 5,000 to 15,000 N per 1-mm width of the ingot sheet, a casting speed of 500 to 3,000 mm/min, and a thickness of the ingot sheet of 2 to 9 mm, wherein one time or more of intermediate annealing is applied midway in said cold-rolling process, so that the final cold-rolling ratio becomes 10 to 95%, and wherein further annealing with a batch heating furnace is applied after said final cold-rolling, at a final sheet thickness in a temperature range of 300 to 450° C., and at a temperature that does not allow recrystallization to complete.
- 14. The method for manufacturing an aluminum alloy fin material for brazing as claimed in claim 13, wherein said intermediate annealing, except for the final annealing, is applied using a heating furnace.
- 15. An aluminum alloy fin material for brazing, wherein the crystalline texture of the fin material, which is obtained by the manufacturing method as claimed in claim 13, comprises a fibrous texture.
- 16. A method for manufacturing an aluminum alloy fin material for brazing, comprising the steps of:forming an ingot sheet, by casting a molten liquid of an aluminum alloy by a twin-roll continuous cast-rolling method; and cold-rolling the ingot sheet, to prepare the fin material, with the aluminum alloy comprising more than 0.6% by mass, and 1.8% by mass or less, of Mn, more than 1.2% by mass, and 2.0% by mass or less, of Fe, and more than 0.6% by mass, and 1.2% by mass or less of Si, as well as at least one of 3.0% by mass or less of Zn, 0.3% by mass or less of In, and 0.3% by mass or less of Sn, with the balance being Al and inevitable impurities, wherein said twin-roll continuous cast-rolling is applied under the conditions of a molten liquid temperature of 700 to 900° C., a roll press load of 5,000 to 15,000 N per 1-mm width of the ingot sheet, a casting speed of 500 to 3,000 mm/min, and a thickness of the ingot sheet of 2 to 9 mm, wherein one time or more of intermediate annealing is applied midway in said cold-rolling process, so that the final cold-rolling ratio becomes 10 to 95%, and wherein further annealing with a batch heating furnace is applied after said final cold-rolling, at a final sheet thickness in a temperature range of 300 to 450° C., and at a temperature that does not allow recrystallization to complete.
- 17. The method for manufacturing an aluminum alloy fin material for brazing as claimed in claim 16, wherein said intermediate annealing, except for the final annealing, is applied using a heating furnace.
- 18. An aluminum alloy fin material for brazing, wherein the crystalline texture of the fin material, which is obtained by the manufacturing method as claimed in claim 16, comprises a fibrous texture.
- 19. A method for manufacturing an aluminum alloy fin material for brazing, comprising the steps of:forming an ingot sheet, by casting a molten liquid of an aluminum alloy by a twin-roll continuous cast-rolling method; and cold-rolling the ingot sheet, to prepare the fin material, with the aluminum alloy comprising more than 0.6% by mass, and 1.8% by mass or less, of Mn, more than 1.2% by mass, and 2.0% by mass or less, of Fe, and more than 0.6% by mass, and 1.2% by mass or less, of Si, as well as at least one of Cu of 0.3% by mass or less, Cr of 0.15% by mass or less, Ti of 0.15% by mass or less, Zr of 0.15% by mass or less, and Mg of 0.5% by mass or less, with the balance being Al and inevitable impurities, wherein said twin-roll continuous cast-rolling is applied under the conditions of a molten liquid temperature of 700 to 900° C., a roll press load of 5,000 to 15,000 N per 1-mm width of the ingot sheet, a casting speed of 500 to 3,000 mm/min, and a thickness of the ingot sheet of 2 to 9 mm, wherein one time or more of intermediate annealing is applied midway in said cold-rolling process, so that the final cold-rolling ratio becomes 10 to 95%, and wherein further annealing with a batch heating furnace is applied after said final cold-rolling, at a final sheet thickness in a temperature range of 300 to 450° C., and at a temperature that does not allow recrystallization to complete.
- 20. The method for manufacturing an aluminum alloy fin material for brazing as claimed in claim 19, wherein said intermediate annealing, except for the final annealing, is applied using a heating furnace.
- 21. An aluminum alloy fin material for brazing, wherein the crystalline texture of the fin material, which is obtained by the manufacturing method as claimed in claim 19, comprises a fibrous texture.
- 22. A method manufacturing an aluminum alloy fin material for brazing, comprising the steps of:forming an ingot sheet, by casting a molten liquid of an aluminum alloy by a twin-roll continuous cast-rolling method; and cold-rolling the ingot sheet, to prepare the fin material, with the aluminum alloy comprising more than 0.6% by mass, and 1.8% by mass or less, of Mn, more than 1.2% by mass, and 2.0% by mass or less, of Fe, and more than 0.6% by mass, and 1.2% by mass or less, of Si, at least one of Zn of 3.0% by mass or less, In of 0.3% by mass or less, and Sn of 0.3% by mass or less, as well as at least one of Cu of 0.3% by mass or less, Cr of 0.15% by mass or less, Ti of 0.15% by mass or less, Zr of 0.15% by mass or less, and Mg of 0.5% by mass or less, with the balance being Al and inevitable impurities, wherein said twin-roll continuous cast-rolling is applied under the conditions of a molten liquid temperature of 700 to 900° C., a roll press load of 5,000 to 15,000 N per 1-mm width of the ingot sheet, a casting speed of 500 to 3,000 mm/min, and a thickness of the ingot sheet of 2 to 9 mm, wherein one time or more of intermediate annealing is applied midway in said cold-rolling process, so that the final cold-rolling ratio becomes 10 to 95%, and wherein further annealing with a batch heating furnace is applied after said final cold-rolling, at a final sheet thickness in a temperature range of 300 to 450° C., and at a temperature that does not allow recrystallization to complete.
- 23. The method for manufacturing an aluminum alloy fin material for brazing as claimed in claim 22, wherein said intermediate annealing, except for the final annealing, is applied using a heating furnace.
- 24. An aluminum alloy fin material for brazing, wherein the crystalline texture of the fin material, which is obtained by the manufacturing method as claimed in claim 22, comprises a fibrous texture.
- 25. A method for manufacturing an aluminum alloy fin material for brazing, comprising the steps of:forming an ingot sheet, by casting a molten liquid of an aluminum alloy by a continuous cast-rolling method; and cold-rolling the ingot sheet, to prepare the fin material, with the aluminum alloy comprising more than 0.6% by mass, and 1.8% by mass or less, of Mn, more than 1.2% by mass, and 2.0% by mass or less, of Fe, and more than 0.6% by mass, and 1.2% by mass or less, of Si, with the balance being Al and inevitable impurities, wherein said continuous cast-rolling is applied under the conditions of a molten liquid temperature of 700 to 900° C., a roll press load of 5,000 to 15,000 N per 1-mm width of the ingot sheet, a casting speed of 500 to 3,000 mm/min, and a thickness of the ingot sheet of 2 to 9 mm, and wherein two times or more of intermediate annealing are applied midway in said cold-rolling process, with said intermediate annealing including final intermediate annealing with a heating furnace, in a temperature range of 300 to 450° C., and at a temperature that does not allow recrystallization to complete, thereby adjusting the rolling ratio in the cold-rolling, after the final intermediate annealing, to 10 to 60%.
- 26. A method for manufacturing an aluminum alloy fin material for brazing, comprising the steps of:forming an ingot sheet, by casting a molten liquid of an aluminum alloy by a continuous cast-rolling method; and cold-rolling the ingot sheet, to prepare the fin material, with the aluminum alloy comprising more than 0.6% by mass, and 1.8% by mass or less, of Mn, more than 1.2% by mass, and 2.0% by mass or less, of Fe, and more than 0.6% by mass, and 1.2% by mass or less, of Si, as well as at least one of Zn of 3.0% by mass or less, In of 0.3% by mass or less, and Sn of 0.3% by mass or less, with the balance being Al and inevitable impurities, wherein said continuous cast-rolling is applied under the conditions of a molten liquid temperature of 700 to 900° C., a roll press load of 5,000 to 15,000 N per 1-mm width of the ingot sheet, a casting speed of 500 to 3,000 mm/min, and a thickness of the ingot sheet of 2 to 9 mm, and wherein two times or more of intermediate annealing are applied midway in said cold-rolling process, with said intermediate annealing including final intermediate annealing with a heating furnace, in a temperature range of 300 to 450° C., and at a temperature that does not allow recrystallization to complete, thereby adjusting the rolling ratio in the cold-rolling, after the final intermediate annealing, to 10 to 60%.
- 27. A method for manufacturing an aluminum alloy fin material for brazing, comprising the steps of:forming an ingot sheet, by casting a molten liquid of an aluminum alloy by a continuous cast-rolling method; and cold-rolling the ingot sheet, to prepare the fin material, with the aluminum alloy comprising more than 0.6% by mass, and 1.8% by mass or less, of Mn, more than 1.2% by mass, and 2.0% by mass or less, of Fe, and more than 0.6% by mass, and 1.2% by mass or less, of Si, as well as at least one of Cu of 0.3% by mass or less, Cr of 0.15% by mass or less, Ti of 0.15% by mass or less, Zr of 0.15% by mass or less, and Mg of 0.5% by mass or less, with the balance being Al and inevitable impurities, wherein said continuous cast-rolling is applied under the conditions of a molten liquid temperature of 700 to 900° C., a roll press load of 5,000 to 15,000 N per 1-mm width of the ingot sheet, a casting speed of 500 to 3,000 mm/min, and a thickness of the ingot sheet of 2 to 9 mm, and wherein two times or more of intermediate annealing are applied midway in said cold-rolling process, with said intermediate annealing including final intermediate annealing with a heating furnace, in a temperature range of 300 to 450° C., and at a temperature that does not allow recrystallization to complete, thereby adjusting the rolling ratio in the cold-rolling, after the final intermediate annealing, to 10 to 60%.
- 28. A method for manufacturing an aluminum alloy fin material for brazing, comprising the steps of:forming an ingot sheet, by casting a molten liquid of an aluminum alloy by a continuous cast-rolling method; and cold-rolling the ingot sheet, to prepare the fin material, with the aluminum alloy comprising more than 0.6% by mass, and 1.8% by mass or less, of Mn, more than 1.2% by mass, and 2.0% by mass or less, of Fe, and more than 0.6% by mass, and 1.2% by mass or less, of Si, at least one of Zn of 3.0% by mass or less, In of 0.3% by mass or less, and Sn of 0.3% by mass or less, as well as at least one of Cu of 0.3% by mass or less, Cr of 0.15% by mass or less, Ti of 0.15% by mass or less, Zr of 0.15% by mass or less, and Mg of 0.5% by mass or less, with the balance being Al and inevitable impurities, wherein said continuous cast-rolling is applied under the conditions of a molten liquid temperature of 700 to 900° C., a roll press load of 5,000 to 15,000 N per 1-mm width of the ingot sheet, a casting speed of 500 to 3,000 mm/min, and a thickness of the ingot sheet of 2 to 9 mm, and wherein two times or more of intermediate annealing are applied midway in said cold-rolling process, with said intermediate annealing including final intermediate annealing with a heating furnace in a temperature range of 300 to 450° C., and at a temperature that does not allow recrystallization to complete, thereby adjusting the rolling ratio in the cold-rolling, after the final intermediate annealing, to 10 to 60%.
- 29. A method for manufacturing an aluminum alloy fin material for brazing, comprising the steps of:forming an ingot sheet, by casting a molten liquid of an aluminum alloy by a continuous cast-rolling method; and cold-rolling the ingot sheet, to prepare the fin material, with the aluminum alloy comprising more than 0.6% by mass, and 1.8% by mass or less, of Mn, more than 1.2% by mass, and 2.0% by mass or less, of Fe, and more than 0.6% by mass, and 1.2% by mass or less, of Si, with the balance being Al and inevitable impurities, wherein said continuous cast-rolling is applied under the conditions of a molten liquid temperature of 700 to 900° C., a roll press load of 5,000 to 15,000 N per 1-mm width of the ingot sheet, a casting speed of 500 to 3,000 mm/min, and a thickness of the ingot sheet of 2 to 9 mm, wherein one time or more of intermediate annealing is applied midway in said cold-rolling process, so that the final cold-rolling ratio becomes 10 to 95%, and wherein further annealing with a heating furnace is applied after said final cold-rolling, at a final sheet thickness in a temperature range of 300 to 450° C., and at a temperature that does not allow recrystallization to complete.
- 30. A method for manufacturing an aluminum alloy fin material for brazing, comprising the steps of:forming an ingot sheet, by casting a molten liquid of an aluminum alloy by a continuous cast-rolling method; and cold-rolling the ingot sheet, to prepare the fin material, with the aluminum alloy comprising more than 0.6% by mass, and 1.8% by mass or less, of Mn, more than 1.2% by mass, and 2.0% by mass or less, of Fe, and more than 0.6% by mass, and 1.2% by mass or less of Si, as well as at least one of 3.0% by mass or less of Zn, 0.3% by mass or less of In, and 0.3% by mass or less of Sn, with the balance being Al and inevitable impurities, wherein said continuous cast-rolling is applied under the conditions of a molten liquid temperature of 700 to 900° C., a roll press load of 5,000 to 15,000 N per 1-mm width of the ingot sheet, a casting speed of 500 to 3,000 mm/min, and a thickness of the ingot sheet of 2 to 9 mm, wherein one time or more of intermediate annealing is applied midway in said cold-rolling process, so that the final cold-rolling ratio becomes 10 to 95%, and wherein further annealing with a heating furnace is applied after said final cold-rolling, at a final sheet thickness in a temperature range of 300 to 450° C., and at a temperature that does not allow recrystallization to complete.
- 31. A method for manufacturing an aluminum alloy fin material for brazing, comprising the steps of:forming an ingot sheet, by casting a molten liquid of an aluminum alloy by a continuous cast-rolling method; and cold-rolling the ingot sheet, to prepare the fin material, with the aluminum alloy comprising more than 0.6% by mass, and 1.8% by mass or less, of Mn, more than 1.2% by mass, and 2.0% by mass or less, of Fe, and more than 0.6% by mass, and 1.2% by mass or less, of Si, as well as at least one of Cu of 0.3% by mass or less, Cr of 0.15% by mass or less, Ti of 0.15% by mass or less, Zr of 0.15% by mass or less, and Mg of 0.5% by mass or less, with the balance being Al and inevitable impurities, wherein said continuous cast-rolling is applied under the conditions of a molten liquid temperature of 700 to 900° C., a roll press load of 5,000 to 15,000 N per 1-mm width of the ingot sheet, a casting speed of 500 to 3,000 mm/min, and a thickness of the ingot sheet of 2 to 9 mm, wherein one time or more of intermediate annealing is applied midway in said cold-rolling process, so that the final cold-rolling ratio becomes 10 to 95%, and wherein further annealing with a heating furnace is applied after said final cold-rolling, at a final sheet thickness in a temperature range of 300 to 450° C., and at a temperature that does not allow recrystallization to complete.
- 32. A method for manufacturing an aluminum alloy fin material for brazing, comprising the steps of:forming an ingot sheet, by casting a molten liquid of an aluminum alloy by a continuous cast-rolling method; and cold-rolling the ingot sheet, to prepare the fin material, with the aluminum alloy comprising more than 0.6% by mass, and 1.8% by mass or less, of Mn, more than 1.2% by mass, and 2.0% by mass or less, of Fe, and more than 0.6% by mass, and 1.2% by mass or less, of Si, at least one of Zn of 3.0% by mass or less, In of 0.3% by mass or less, and Sn of 0.3% by mass or less, as well as at least one of Cu of 0.3% by mass or less, Cr of 0.15% by mass or less, Ti of 0.15% by mass or less, Zr of 0.15% by mass or less, and Mg of 0.5% by mass or less, with the balance being Al and inevitable impurities, wherein said continuous cast-rolling is applied under the conditions of a molten liquid temperature of 700 to 900° C., a roll press load of 5,000 to 15,000 N per 1-mm width of the ingot sheet, a casting speed of 500 to 3,000 mm/min, and a thickness of the ingot sheet of 2 to 9 mm, wherein one time or more of intermediate annealing is applied midway in said cold-rolling process, so that the final cold-rolling ratio becomes 10 to 95%, and wherein further annealing with a heating furnace is applied after said final cold-rolling, at a final sheet thickness in a temperature range of 300 to 450° C., and at a temperature that does not allow recrystallization to complete.
Priority Claims (2)
Number |
Date |
Country |
Kind |
2000-379185 |
Dec 2000 |
JP |
|
2001-278658 |
Sep 2001 |
JP |
|
Parent Case Info
This is a continuation of PCT Application PCT/JP01/10517, filed Nov. 30, 2001. The prior PCT application was not published in English under PCT Article 21(2).
US Referenced Citations (13)
Foreign Referenced Citations (9)
Number |
Date |
Country |
02-299714 |
Dec 1990 |
JP |
03-031454 |
Feb 1991 |
JP |
03-100143 |
Apr 1991 |
JP |
07-216485 |
Aug 1995 |
JP |
08-104934 |
Apr 1996 |
JP |
08-143998 |
Jun 1996 |
JP |
10-152762 |
Jun 1998 |
JP |
2000-303156 |
Oct 2000 |
JP |
WO 0005426 |
Feb 2000 |
WO |
Continuations (1)
|
Number |
Date |
Country |
Parent |
PCT/JP01/10517 |
Nov 2001 |
US |
Child |
10/152922 |
|
US |