The present disclosure relates to a method for manufacturing an electrode assembly configured for use with an electrosurgical instrument. More particularly, the present disclosure relates to a method for manufacturing an electrode assembly including a self-setting electrode configuration.
Electrosurgical instruments configured to electrosurgically treat tissue are well known in the art. Typically, the electrosurgical instrument includes a housing, shaft, and an end effector including a pair of jaw members. One or more suitable electrosurgical energy sources may be utilized to provide electrosurgical energy to the jaw members of the end effector. Depending on the electrical configuration of the jaw members, one or both of the jaw members will include an electrode configuration that is configured to supply current thereto for electrosurgically treating, e.g., coagulate, seal, fulgurate, desiccate, etc., tissue.
In certain instances, such as, for example, during a tissue sealing procedure, a precise, well maintained gap between opposing electrodes is required to ensure proper vessel sealing and grasping functions. This gap, which is commonly referred to in the art as “jaw gap,” is a function of the individual components as well as the final device assembly process. Variation in these areas may lead to overall variation in “jaw gap” that may result in degradation of performance.
As can be appreciated, a method for manufacturing an electrode assembly including a self-setting electrode configuration may prove useful in the surgical arena.
Embodiments of the present disclosure are described in detail with reference to the drawing figures wherein like reference numerals identify similar or identical elements. As used herein, the term “distal” refers to the portion that is being described which is further from a user, while the term “proximal” refers to the portion that is being described which is closer to a user.
An aspect of the present disclosure provides a method for manufacturing an electrode configuration for an electrosurgical instrument. A jaw configuration including first and second jaw members including respective first and second electrodes thereon is provided. One or more stop members are positioned on the first electrode. The first and second jaw members including the electrodes are approximated toward one another for contact therebetween. And, one or more indentations are formed on the second electrode. The indentation(s) may be configured to provide a jaw gap that ranges from about 0.01 inches to about 0.06 inches. Moreover, during in-situ use of the pre-assembled jaw members, engagement between the at least one stop member and the at least one indentation is configured to prevent jaw splay.
Approximating the first and second jaw members including the electrodes may include compressing the first and second jaw members with a force that is at least twice as much as a force that is utilized to electrosurgically treat tissue in situ. Positioning the stop member(s) may include providing a stop member that is a ceramic dot.
A shim may be provided between the first and second opposing electrodes prior to approximating the first and second jaw members including the electrodes toward one another so as to control a depth of the at least one indentation. A portion of a bottom surface of the second electrode may be removed to facilitate forming the at least one indentation. The portion of the bottom surface may be located directly beneath the position of where the at least one indentation is to be formed. An etching process may be utilized to remove the portion of a bottom surface of the second electrode. Alternatively, a portion of a bottom surface of the second electrode may be chemically treated to facilitate forming the at least one indentation; the portion of the bottom surface is located directly beneath chemically.
An aspect of the present disclosure provides a method for manufacturing an electrode configuration for an electrosurgical instrument. A pre-assembled jaw configuration including first and second jaw members including respective first and second electrodes is provided. One or more stop members are positioned on the first electrode. A portion of a bottom surface of the second electrode is configured to deform when a predetermined force is applied thereto. The first and second jaw members including the electrodes are approximated toward one another for contact therebetween. And, one or more indentations are formed on the second electrode. The indentation(s) may be configured to provide a jaw gap that ranges from about 0.01 inches to about 0.06 inches. Moreover, during in-situ use of the pre-assembled jaw members, engagement between the at least one stop member and the at least one indentation is configured to prevent jaw splay.
Approximating the first and second jaw members including the electrodes may include compressing the first and second jaw members with a force that is at least twice as much as a force that is utilized to electrosurgically treat tissue in situ. Positioning the stop member(s) may include providing a stop member that is a ceramic dot.
A shim may be provided between the first and second opposing electrodes prior to approximating the first and second jaw members including the electrodes toward one another so as to control a depth of the at least one indentation. A portion of a bottom surface of the second electrode may be removed to facilitate forming the at least one indentation. The portion of the bottom surface may be located directly beneath the position of where the at least one indentation is to be formed. An etching process may be utilized to remove the portion of a bottom surface of the second electrode. Alternatively, a portion of a bottom surface of the second electrode may be chemically treated to facilitate forming the at least one indentation. The portion of the bottom surface may be located directly beneath the position of where the at least one indentation is to be formed.
An aspect of the present disclosure provides a method for manufacturing an electrode configuration for an electrosurgical instrument. A pre-assembled jaw configuration including first and second jaw members including respective first and second electrodes is provided. One or more stop members are positioned on the first electrode. A portion of a bottom surface of the second electrode is configured to deform when a predetermined force is applied thereto. A shim may be provided between the first and second opposing electrodes. The first and second jaw members including the electrodes are approximated toward one another for contact therebetween. And, one or more indentations are formed on the second electrode. The indentation(s) may be configured to provide a jaw gap that ranges from about 0.01 inches to about 0.06 inches. The shim may be provided between the first and second opposing electrodes prior to approximating the first and second jaw members including the electrodes toward one another so as to control a depth of the at least one indentation.
Various embodiments of the present disclosure are described hereinbelow with references to the drawings, wherein:
Detailed embodiments of the present disclosure are disclosed herein; however, the disclosed embodiments are merely examples of the disclosure, which may be embodied in various forms. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the present disclosure in virtually any appropriately detailed structure.
With reference to
In accordance with the instant disclosure, one or both of electrodes 30, 32 may be formed with an indention 40 and/or a stop member 42 (see
Stop members 42 may be formed or coupled to electrode 30 via any suitable forming or coupling methods. For example, in the illustrated embodiment stop members 42 are in the form of ceramic dots that have been affixed to a tissue contacting surface of electrode 30 via one or more suitable adhesives. Stop members 42 are configured to contact electrode 32 so as to provide a specific gap distance between jaw members 26, 28 when the jaw members 26, 28 are in a clamping configuration, see
Additionally, stop members 42 are configured to contact a tissue contacting surface of electrode 32 so as to form a corresponding indentation 40 thereon. Specifically, during a manufacturing process of jaw members 26, 28, jaw members 26, 28 are approximated toward one another and compressed under a suitable compressive force so that stop members 42 contact the tissue contacting surface of electrode 32 and form a corresponding indentation thereon (see
In embodiments, one or more shims 44 formed from any suitable material, e.g., ceramic, may be placed between electrodes 30, 32 prior to approximating the jaw members 26, 28 including electrodes 30, 32 toward one another so as to control a depth of indentation 40. Shim(s) 44 include a height that is approximately equal to a desired gap distance. In the illustrated embodiment for example, shim(s) 44 include a height that ranges from about 0.01 inches to about 0.06 inches. In certain embodiments, the height of shim(s) 44 may be about 0.03 inches.
In embodiments, prior to the overmolding process, electrodes 30, 32 may be chemically or otherwise treated. Specifically, a portion 46 of a bottom surface electrode 32 may be removed to facilitate forming indentations 40 on electrode 32. For example, in one particular embodiment, an etching process may be utilized to remove portion 46 of a bottom surface of one of the jaw members, e.g., jaw member 28. Alternatively, a portion 46 of the bottom surface of electrode 32 may be chemically treated with one or more suitable chemicals, e.g., acid, to remove portion 46 from electrode 32. In either embodiment, portion 46 is located directly beneath a position of where indentation 40 is to be formed on electrode 32, see
Method 100 may be carried out in the following manner. A pre-assembled jaw configuration including jaw members 26, 28 including respective electrodes 30, 32 thereon may be provided (see
As noted above, during in-situ use of jaw members 26, 28, indentation(s) 40 may be configured to provide gap distance that ranges from about 0.01 inches to about 0.06 inches when jaw members 26, 28 are in a clamping configuration. Specifically, when tissue is to be sealed, stop member(s) 42 engage indentation(s) 40 to provide a specific gap distance between electrodes 30, 32. Moreover, a ratchet mechanism or other suitable device (not explicitly shown) may be provided on forceps 4 and may be configured to maintain a specific compressive force on tissue when tissue is clamped between jaw members 26, 28. The compressive force applied to tissue may range from about 3 kg/cm3 to about 16 kg/cm3 or about half of the compressive force that is utilized to form indentation(s) 40 on electrode 32. Further, one or more controllers or control algorithms (not explicitly shown) may be operably coupled to the forceps 4 (or provided in the generator) to control the amount of electrosurgical energy that is provided to electrodes 30, 32. All of these three factors may contribute in providing an effective, uniform and consistent tissue seal.
In accordance with the instant disclosure, the unique method 100 of manufacture of electrodes 40, 42 eliminates the aforementioned variations by incorporating self-setting features therein to precisely set a given jaw gap between the jaw members 26, 28.
Moreover, during in-situ use of jaw members 26, 28, engagement between stop member(s) 42 and indentation(s) 40 is configured to prevent jaw splay of jaw members 26, 28.
From the foregoing and with reference to the various figure drawings, those skilled in the art will appreciate that certain modifications can also be made to the present disclosure without departing from the scope of the same. For example, while the aforementioned electrodes 30, 32 have been formed via method 100 and configured for use with an endoscopic electrosurgical instrument 4, electrodes 30, 32 may be formed via method 100 and configured for use with an open type electrosurgical forceps, e.g., scissor type forceps.
While several embodiments of the disclosure have been shown in the drawings, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as exemplifications of particular embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.
The present application is a divisional application of U.S. patent application Ser. No. 14,103,971, filed on Dec. 12, 2013, which claims the benefit of and priority to U.S. Provisional Application Ser. No. 61/766,563, filed on Feb. 19, 2013, the entire contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
D249549 | Pike | Sep 1978 | S |
D263020 | Rau, III | Feb 1982 | S |
D295893 | Sharkany et al. | May 1988 | S |
D295894 | Sharkany et al. | May 1988 | S |
D298353 | Manno | Nov 1988 | S |
D299413 | DeCarolis | Jan 1989 | S |
D343453 | Noda | Jan 1994 | S |
D348930 | Olson | Jul 1994 | S |
D349341 | Lichtman et al. | Aug 1994 | S |
D354564 | Medema | Jan 1995 | S |
D358887 | Feinberg | May 1995 | S |
D384413 | Zlock et al. | Sep 1997 | S |
H001745 | Paraschac | Aug 1998 | H |
D402028 | Grimm et al. | Dec 1998 | S |
D408018 | McNaughton | Apr 1999 | S |
D416089 | Barton et al. | Nov 1999 | S |
D424694 | Tetzlaff et al. | May 2000 | S |
D425201 | Tetzlaff et al. | May 2000 | S |
H001904 | Yates et al. | Oct 2000 | H |
D449886 | Tetzlaff et al. | Oct 2001 | S |
D453923 | Olson | Feb 2002 | S |
D454951 | Bon | Mar 2002 | S |
D457958 | Dycus et al. | May 2002 | S |
D457959 | Tetzlaff et al. | May 2002 | S |
H002037 | Yates et al. | Jul 2002 | H |
D465281 | Lang | Nov 2002 | S |
D466209 | Bon | Nov 2002 | S |
D493888 | Reschke | Aug 2004 | S |
D496997 | Dycus et al. | Oct 2004 | S |
D499181 | Dycus et al. | Nov 2004 | S |
D502994 | Blake, III | Mar 2005 | S |
D509297 | Wells | Sep 2005 | S |
D525361 | Hushka | Jul 2006 | S |
D531311 | Guerra et al. | Oct 2006 | S |
D533274 | Visconti et al. | Dec 2006 | S |
D533942 | Kerr et al. | Dec 2006 | S |
7150097 | Sremcich et al. | Dec 2006 | B2 |
D535027 | James et al. | Jan 2007 | S |
D538932 | Malik | Mar 2007 | S |
D541418 | Schechter et al. | Apr 2007 | S |
D541611 | Aglassinger | May 2007 | S |
D541938 | Kerr et al. | May 2007 | S |
D545432 | Watanabe | Jun 2007 | S |
D547154 | Lee | Jul 2007 | S |
D564662 | Moses et al. | Mar 2008 | S |
D567943 | Moses et al. | Apr 2008 | S |
D575395 | Hushka | Aug 2008 | S |
D575401 | Hixson et al. | Aug 2008 | S |
D582038 | Swoyer et al. | Dec 2008 | S |
D617900 | Kingsley et al. | Jun 2010 | S |
D617901 | Unger et al. | Jun 2010 | S |
D617902 | Twomey et al. | Jun 2010 | S |
D617903 | Unger et al. | Jun 2010 | S |
D618798 | Olson et al. | Jun 2010 | S |
D621503 | Otten et al. | Aug 2010 | S |
D627462 | Kingsley | Nov 2010 | S |
D628289 | Romero | Nov 2010 | S |
D628290 | Romero | Nov 2010 | S |
D630324 | Reschke | Jan 2011 | S |
D649249 | Guerra | Nov 2011 | S |
D649643 | Allen, IV et al. | Nov 2011 | S |
D661394 | Romero et al. | Jun 2012 | S |
8266783 | Brandt et al. | Sep 2012 | B2 |
8679140 | Butcher | Mar 2014 | B2 |
RE44834 | Dumbauld et al. | Apr 2014 | E |
9713491 | Roy et al. | Jul 2017 | B2 |
20020062123 | McClurken | May 2002 | A1 |
20050033278 | McClurken | Feb 2005 | A1 |
20050131390 | Heinrich et al. | Jun 2005 | A1 |
20110060334 | Brandt | Mar 2011 | A1 |
20110072638 | Brandt | Mar 2011 | A1 |
20110073246 | Brandt | Mar 2011 | A1 |
20120083783 | Davison | Apr 2012 | A1 |
20120083784 | Davison | Apr 2012 | A1 |
20130014375 | Hempstead et al. | Jan 2013 | A1 |
20130071282 | Fry | Mar 2013 | A1 |
20130185922 | Twomey et al. | Jul 2013 | A1 |
20130232753 | Ackley | Sep 2013 | A1 |
20130255063 | Hart et al. | Oct 2013 | A1 |
20130292238 | Petty | Nov 2013 | A1 |
20140031821 | Garrison | Jan 2014 | A1 |
20140031860 | Stoddard et al. | Jan 2014 | A1 |
20140046323 | Payne et al. | Feb 2014 | A1 |
20140052128 | Townsend et al. | Feb 2014 | A1 |
20140066910 | Nau, Jr. | Mar 2014 | A1 |
20140066911 | Nau, Jr. | Mar 2014 | A1 |
20140074091 | Arya et al. | Mar 2014 | A1 |
Number | Date | Country |
---|---|---|
201299462 | Sep 2009 | CN |
2415263 | Oct 1975 | DE |
02514501 | Oct 1976 | DE |
2627679 | Jan 1977 | DE |
03423356 | Jun 1986 | DE |
03612646 | Apr 1987 | DE |
3627221 | Feb 1988 | DE |
8712328 | Feb 1988 | DE |
04303882 | Feb 1995 | DE |
04403252 | Aug 1995 | DE |
19515914 | Jul 1996 | DE |
19506363 | Aug 1996 | DE |
29616210 | Nov 1996 | DE |
19608716 | Apr 1997 | DE |
19751106 | May 1998 | DE |
19738457 | Mar 1999 | DE |
19751108 | May 1999 | DE |
19946527 | Jul 2001 | DE |
10031773 | Nov 2001 | DE |
10045375 | Apr 2002 | DE |
20121161 | Apr 2002 | DE |
102004026179 | Dec 2005 | DE |
202007009165 | Aug 2007 | DE |
202007009317 | Aug 2007 | DE |
202007009318 | Aug 2007 | DE |
202007016233 | Jan 2008 | DE |
102008018406 | Jul 2009 | DE |
1281878 | Feb 2003 | EP |
1159926 | Mar 2003 | EP |
61501068 | Sep 1984 | JP |
6502328 | Mar 1992 | JP |
55106 | Jan 1993 | JP |
H054-0112 | Feb 1993 | JP |
6121797 | May 1994 | JP |
6285078 | Oct 1994 | JP |
6511401 | Dec 1994 | JP |
H63-43644 | Dec 1994 | JP |
H72-65328 | Oct 1995 | JP |
H085-6955 | Mar 1996 | JP |
H82-52263 | Oct 1996 | JP |
8289895 | Nov 1996 | JP |
8317934 | Dec 1996 | JP |
8317936 | Dec 1996 | JP |
910223 | Jan 1997 | JP |
H090-00538 | Jan 1997 | JP |
9122138 | May 1997 | JP |
H10-000195 | Jan 1998 | JP |
H10-24051 | Jan 1998 | JP |
10155798 | Jun 1998 | JP |
1147149 | Feb 1999 | JP |
1147150 | Feb 1999 | JP |
11070124 | Mar 1999 | JP |
11169381 | Jun 1999 | JP |
11192238 | Jul 1999 | JP |
11244298 | Sep 1999 | JP |
2000102545 | Apr 2000 | JP |
2000135222 | May 2000 | JP |
2000342599 | Dec 2000 | JP |
2000350732 | Dec 2000 | JP |
20013400 | Jan 2001 | JP |
20018944 | Jan 2001 | JP |
200129355 | Feb 2001 | JP |
200129356 | Feb 2001 | JP |
2001128990 | May 2001 | JP |
2001190564 | Jul 2001 | JP |
2002136525 | May 2002 | JP |
2002528166 | Sep 2002 | JP |
2003116871 | Apr 2003 | JP |
2003175052 | Jun 2003 | JP |
2003245285 | Sep 2003 | JP |
2004517668 | Jun 2004 | JP |
2004528869 | Sep 2004 | JP |
2005152663 | Jun 2005 | JP |
2005253789 | Sep 2005 | JP |
2005312807 | Nov 2005 | JP |
2006015078 | Jan 2006 | JP |
2006501939 | Jan 2006 | JP |
2006095316 | Apr 2006 | JP |
2011125195 | Jun 2011 | JP |
6030945 | Nov 2016 | JP |
401367 | Oct 1973 | SU |
0036986 | Jun 2000 | WO |
0059392 | Oct 2000 | WO |
0115614 | Mar 2001 | WO |
0154604 | Aug 2001 | WO |
0245589 | Jun 2002 | WO |
2006021269 | Mar 2006 | WO |
05110264 | Apr 2006 | WO |
2008040483 | Apr 2008 | WO |
2011018154 | Feb 2011 | WO |
Entry |
---|
U.S. Appl. No. 08/926,869, filed Sep. 10, 1997, James G. Chandler. |
U.S. Appl. No. 09/177,950, filed Oct. 23, 1998, Randel A. Frazier. |
U.S. Appl. No. 09/387,883, filed Sep. 1, 1999, Dale F. Schmaltz. |
U.S. Appl. No. 09/591,328, filed Jun. 9, 2000, Thomas P. Ryan. |
U.S. Appl. No. 12/336,970, filed Dec. 17, 2008, Paul R. Sremeich. |
U.S. Appl. No. 13/731,674, filed Dec. 31, 2012, Siebrecht. |
U.S. Appl. No. 14/019,031, filed Sep. 5, 2013, Garrison. |
U.S. Appl. No. 14/019,094, filed Sep. 5, 2013, Garrison. |
U.S. Appl. No. 14/032,486, filed Sep. 20, 2013, Kendrick. |
U.S. Appl. No. 14/035,423, filed Sep. 24, 2013, Garrison. |
U.S. Appl. No. 14/037,772, filed Sep. 26, 2013, Frushour. |
U.S. Appl. No. 14/041,995, filed Sep. 30, 2013, Kendrick. |
U.S. Appl. No. 14/042,947, filed Oct. 1, 2013, Craig. |
U.S. Appl. No. 14/043,039, filed Oct. 1, 2013, Rusin. |
U.S. Appl. No. 14/043,322, filed Oct. 1, 2013, O'Neill. |
U.S. Appl. No. 14/047,474, filed Oct. 7, 2013, Mueller. |
U.S. Appl. No. 14/050,593, filed Oct. 10, 2013, Pleven. |
U.S. Appl. No. 14/052,827, filed Oct. 14, 2013, Nau. |
U.S. Appl. No. 14/052,856, filed Oct. 14, 2013, Latimer. |
U.S. Appl. No. 14/052,871, filed Oct. 14, 2013, Kappus. |
U.S. Appl. No. 14/054,173, filed Oct. 15, 2013, Payne. |
U.S. Appl. No. 14/054,573, filed Oct. 15, 2013, Harper. |
U.S. Appl. No. 14/064,310, filed Oct. 28, 2013, Reschke. |
U.S. Appl. No. 14/065,644, filed Oct. 29, 2013, Reschke. |
U.S. Appl. No. 14/080,564, filed Nov. 14, 2013, Lawes. |
U.S. Appl. No. 14/080,581, filed Nov. 14, 2013, Kerr. |
U.S. Appl. No. 14/083,696, filed Nov. 19, 2013, Horner. |
U.S. Appl. No. 14/086,399, filed Nov. 21, 2013, Allen. |
U.S. Appl. No. 14/091,505, filed Nov. 27, 2013, Garrison. |
U.S. Appl. No. 14/091,521, filed Nov. 27, 2013, Garrison. |
U.S. Appl. No. 14/091,532, filed Nov. 27, 2013, Garrison. |
U.S. Appl. No. 14/098,953, filed Dec. 6, 2013, Cunningham. |
U.S. Appl. No. 14/100,237, filed Dec. 9, 2013, Reschke. |
U.S. Appl. No. 14/103,971, filed Dec. 12, 2013, Roy. |
U.S. Appl. No. 14/105,374, filed Dec. 13, 2013, Moua. |
U.S. Appl. No. 14/109,459, filed Dec. 17, 2013, Hoarau. |
U.S. Appl. No. 14/149,343, filed Jan. 7, 2014, Schmaltz. |
U.S. Appl. No. 14/152,618, filed Jan. 10, 2014, Artale. |
U.S. Appl. No. 14/152,690, filed Jan. 10, 2014, Hart. |
U.S. Appl. No. 14/153,346, filed Jan. 13, 2014, Collings. |
U.S. Appl. No. 14/162,192, filed Jan. 23, 2014, Garrison. |
U.S. Appl. No. 14/164,569, filed Jan. 27, 2014, Heard. |
U.S. Appl. No. 14/169,358, filed Jan. 31, 2014, Reschke. |
U.S. Appl. No. 14/172,050, filed Feb. 4, 2014, Johnson. |
U.S. Appl. No. 14/173,391, filed Feb. 5, 2014, Kharin. |
U.S. Appl. No. 14/176,341, filed Feb. 10, 2014, Hart. |
U.S. Appl. No. 14/176,684, filed Feb. 10, 2014, Chojin. |
U.S. Appl. No. 14/177,812, filed Feb. 11, 2014, Dycus. |
U.S. Appl. No. 14/178,540, filed Feb. 12, 2014, Anderson. |
U.S. Appl. No. 14/182,894, filed Feb. 18, 2014, Hart. |
U.S. Appl. No. 14/182,967, filed Feb. 18, 2014, Latimer. |
U.S. Appl. No. 14/183,090, filed Feb. 18, 2014, Arts. |
U.S. Appl. No. 14/188,935, filed Feb. 25, 2014, Reschke. |
U.S. Appl. No. 14/196,066, filed Mar. 4, 2014, McCullough. |
U.S. Appl. No. 14/204,770, filed Mar. 11, 2014, Dumbauld. |
Michael Choti, “Abdominoperineal Resection with the LigaSure Vessel Sealing System and LigaSure Atlas 20 cm Open Instrument” ; Innovations That Work, Jun. 2003. |
Chung et al., “Clinical Experience of Sutureless Closed Hemorrhoidectomy with LigaSure” Diseases of the Colon & Rectum vol. 46, No. 1 Jan. 2003. |
Tinkcler L.F., “Combined Diathermy and Suction Forceps” , Feb. 6, 1967 (Feb. 6, 1965), British Medical Journal Feb. 6, 1976, vol. 1, nr. 5431 p. 361, ISSN: 0007-1447. |
Carbonell et al., “Comparison of theGyrus PlasmaKinetic Sealer and the Valleylab LigaSure Device in the Hemostasis of Small, Medium, and Large-Sized Arteries” Carolinas Laparoscopic and Advanced Surgery Program, Carolinas Medical Center, Charlotte,NC; Date: Aug. 2003. |
Peterson et al. “Comparison of Healing Process Following Ligation with Sutures and Bipolar Vessel Sealing” Surgical Technology International (2001). |
“Electrosurgery: A Historical Overview” Innovations in Electrosurgery; Sales—Product Literature; Dec. 31, 2000. |
Johnson et al. “Evaluation of a Bipolar Electrothermal Vessel Sealing Device in Hemorrhoidectomy” Sales—Product Literature; Jan. 2004. |
E. David Crawford “Evaluation of a New Vessel Sealing Device in Urologic Cancer Surgery” Sales—Product Literature 2000. |
Johnson et al. “Evaluation of the LigaSure Vessel Sealing System in Hemorrhoidectormy” American College of Surgeons (ACS) Clinicla Congress Poster (2000). |
Muller et al., “Extended Left Hemicolectomy Using the LigaSure Vessel Sealing System” Innovations That Work, Sep. 1999. |
Kennedy et al. “High-burst-strength, feedback-controlled bipolar vessel sealing” Surgical Endoscopy (1998) 12: 876-878. |
Burdette et al. “In Vivo Probe Measurement Technique for Determining Dielectric Properties at VHF Through Microwave Frequencies”, IEEE Transactions on Microwave Theory and Techniques, vol. MTT-28, No. 4, Apr. 1980 pp. 414-427. |
Carus et al., “Initial Experience With the LigaSure Vessel Sealing System in Abdominal Surgery” Innovations That Work, Jun. 2002. |
Heniford et al. “Initial Research and Clinical Results with an Electrothermal Bipolar Vessel Sealer” Oct. 1999. |
Heniford et al. “Initial Results with an Electrothermal Bipolar Vessel Sealer” Surgical Endoscopy (2000) 15:799-801. |
Herman et al., “Laparoscopic Intestinal Resection With the LigaSure Vessel Sealing System: A Case Report”; Innovations That Work, Feb. 2002. |
Koyle et al., “Laparoscopic Palomo Varicocele Ligation in Children and Adolescents” Pediatric Endosurgery & Innovative Techniques, vol. 6, No. 1, 2002. |
W. Scott Helton, “LigaSure Vessel Sealing System: Revolutionary Hemostasis Product for General Surgery”; Sales—Product Literature 1999. |
LigaSure Vessel Sealing System, the Seal of Confidence in General, Gynecologic, Urologic, and Laparaoscopic Surgery; Sales—Product Literature; Apr. 2002. |
Joseph Ortenberg “LigaSure System Used in Laparoscopic 1st and 2nd Stage Orchiopexy” Innovations That Work, Nov. 2002. |
Sigel et al. “The Mechanism of Blood Vessel Closure by High Frequency Electrocoagulation” Surgery Gynecology & Obstetrics, Oct. 1965 pp. 823-831. |
Sampayan et al, “Multilayer Ultra-High Gradient Insulator Technology” Discharges and Electrical Insulation in Vacuum, 1998. Netherlands Aug. 17-21, 1998; vol. 2, pp. 740-743. |
Paul G. Horgan, “A Novel Technique for Parenchymal Division During Hepatectomy” The American Journal of Surgery, vol. 181, No. 3, Apr. 2001 pp. 236-237. |
Benaron et al., “Optical Time-Of-Flight and Absorbance Imaging of Biologic Media”, Science, American Association for the Advancement of Science, Washington, DC, vol. 259, Mar. 5, 1993, pp. 1463-1466. |
Olsson et al. “Radical Cystectomy in Females” Current Surgical Techniques in Urology, vol. 14, Issue 3, 2001. |
Palazzo et al. “Randomized clinical trial of Ligasure versus open haemorrhoidectomy” British Journal of Surgery 2002, 89, 154-157. |
Levy et al. “Randomized Trial of Suture Versus Electrosurgical Bipolar Vessel Sealing in Vaginal Hysterectomy” Obstetrics & Gynecology, vol. 102, No. 1, Jul. 2003. |
“Reducing Needlestick Injuries in the Operating Room” Sales—Product Literature 2001. |
Bergdahl et al. “Studies on Coagulation and the Development of an Automatic Computerized Bipolar Coagulator” J. Neurosurg, vol. 75, Jul. 1991, pp. 148-151. |
Strasberg et al. “A Phase I Study of the LigaSure Vessel Sealing System in Hepatic Surgery” Section of HPB Surger, Washington University School of Medicine, St. Louis MO, Presented at AHPBA, Feb. 2001. |
Sayfan et al. “Sutureless Closed Hemorrhoidectomy: A New Technique” Annals of Surgery vol. 234 No. 1 Jul. 2001; pp. 21-24. |
Levy et al., “Update on Hysterectomy—New Technologies and Techniques” OBG Management, Feb. 2003. |
Dulemba et al. “Use of a Bipolar Electrothermal Vessel Sealer in Laparoscopically Assisted Vaginal Hysterectomy” Sales—Product Literature; Jan. 2004. |
Strasberg et al., “Use of a Bipolar Vessel-Sealing Device for Parenchymal Transection During Liver Surgery” Journal of Gastrointestinal Surgery, vol. 6, No. 4, Jul.-Aug. 2002 pp. 569-574. |
Sengupta et al., “Use of a Computer-Controlled Bipolar Diathermy System in Radical Prostatectomies and Other Open Urological Surgery” ANZ Journal of Surgery (2001) 71.9 pp. 538-540. |
Rothenberg et al. “Use of the LigaSure Vessel Sealing System in Minimally Invasive Surgery in Children” Int'l Pediatric Endosurgery Group (IPEG) 2000. |
Crawford et al. “Use of the LigaSure Vessel Sealing System in Urologic Cancer Surgery” Grand Rounds in Urology 1999 vol. 1 Issue 4 pp. 10-17. |
Craig Johnson, “Use of the LigaSure Vessel Sealing System in Bloodless Hemorrhoidectomy” Innovations That Work, Mar. 2000. |
Levy et al. “Use of a New Energy-based Vessel Ligation Device During Vaginal Hysterectomy” Int'l Federation of Gynecology and Obstetrics (FIGO) World Congress 1999. |
Barbara Levy, “Use of a New Vessel Ligation Device During Vaginal Hysterectomy” FIGO 2000, Washington, D.C. |
E. David Crawford “Use of a Novel Vessel Sealing Technology in Management of the Dorsal Veinous Complex” Sales—Product Literature 2000. |
Jarrett et al., “Use of the LigaSure Vessel Sealing System for Peri-Hilar Vessels in Laparoscopic Nephrectomy” Sales—Product Literature 2000. |
Crouch et al. “A Velocity-Dependent Model for Needle Insertion in Soft Tissue” MICCAI 2005; LNCS 3750 pp. 624-632, Dated: 2005. |
McLellan et al. “Vessel Sealing for Hemostasis During Pelvic Surgery” Int'l Federation of Gynecology and Obstetrics FIGO World Congress 2000, Washington, D.C. |
McLellan et al. “Vessel Sealing for Hemostasis During Gynecologic Surgery” Sales—Product Literature 1999. |
Number | Date | Country | |
---|---|---|---|
20170319266 A1 | Nov 2017 | US |
Number | Date | Country | |
---|---|---|---|
61766563 | Feb 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14103971 | Dec 2013 | US |
Child | 15658978 | US |