This application claims the benefit of German Application No. 10 2015 115 746.2, filed on Sep. 17, 2015 the contents of which are hereby incorporated by reference in their entirety.
The present invention generally relates to a method of manufacturing a spark plug electrode.
A method of manufacturing a spark plug electrode and a spark plug manufactured therewith are disclosed in EP 1,576,707 B1. In the prior art spark plug, the center electrode and the ground electrode are each provided with an end piece, called a firing tip in EP 1,576,707 B1, that is made of a precious metal alloy primarily containing iridium. These end pieces are bonded to the center electrode and the ground electrode by laser welding. The purpose of tipping the electrodes with end pieces made of an iridium alloy is to extend the service life of the spark plug, which iridium and iridium alloys are well suited for. However, iridium is a costly precious metal.
An object of the present design is to reduce the cost of manufacturing spark plugs.
This object may be attained by a method with the features specified in claim 1. Advantageous further developments are the subject matter of the dependent claims.
According to the present disclosure, there is provided a method for manufacturing ignition electrodes for spark plugs that have a section made of a base metal or a base metal alloy that is tipped at one end with a precious metal or with a precious metal alloy, these being manufactured by the means that firstly a green part or brown part containing the base metal or the base metal alloy is produced by powder metallurgy. A green part is understood here to be a body that is produced from a powder or a powder mixture by powder metallurgy through pressing, and that can still contain a binder in addition to the metal powder. A brown part is understood here to be a body that is produced by powder metallurgy through pressing and that has been rid of a binder that was originally contained therein. A core is understood here to be the core or body of the composite part and may take the form of, and be referred to herein, as a green part, a base metal green part, a brown part, a core, a body, etc.; each of these terms refers to a core. Removal of the binder from the pressed body is also referred to as debinding. Neither the green part nor the brown part has been sintered yet.
According to one embodiment, a portion of the surface of the green part or brown part is coated with a mixture that contains the precious metal or the precious metal alloy in the form of a powder and a binder. Next, the binder is removed from the layer that contains the precious metal or the precious metal alloy (debound). Next the coated and debound green part or brown part is sintered. The result is a composite part that consists predominantly of the base metal or the base metal alloy, wherein a portion of the surface of the compound part has a layer that is firmly bonded by the sintering process and that contains the precious metal or the precious metal alloy. A side of the composite part thus formed that faces away from the precious metal or precious metal alloy is then welded to the one end of the base-metal section of the ignition electrode.
At least some embodiments have the advantage that the composite part that is welded as an end piece to one end of the base-metal section of the ignition electrode is not made of solid precious metal or precious metal alloy, but instead is made partly, preferably predominantly, of the base metal or base metal alloy. In this way, the quantity of the costly precious metal required when tipping the ignition electrodes with precious metal can be reduced without sacrifices in service life as compared to the prior art.
Another potential advantage is that, as a result of the use of the composite part as an end piece, welding of the end piece to the one end of the base-metal section of the ignition electrode is problem-free because the two surfaces to be welded to one another can be made predominantly of the same base metal or predominantly of the same base metal alloy. Problems that have occurred in the prior art due to the welding of an end piece made of a precious metal or of a precious metal alloy to the base-metal section of the ignition electrode, for example because of different coefficients of thermal expansion, are avoided or are less significant when the present method is used. This could be due to the fact that the present method may result in an interlocking between the layer containing the precious metal or precious metal alloy and the base metal or base metal alloy underneath it. As a result of the sintering process, intermetallic compounds can be formed in the bonding zone that further increase the bonding effect in combination with the interlocking of the layer containing the precious metal or precious metal alloy and the base metal or base metal alloy underneath it.
Suitable binders and methods for removing the binder from the green part (debinding) are known to the person skilled in the art from metal injection molding technology. For example, a thermoplastic plastic that can be removed by, e.g., burnout or pyrolysis, can be used as the binder.
The base-metal section of the ignition electrode and the composite part can be cylindrical. They are then especially suitable for manufacturing a center electrode of a spark plug.
The base metal or the base metal alloy can have a composition that is normally used for spark plugs. The use of nickel and nickel-based alloys, in particular Inconel 600, is known and suitable.
The precious metals or precious metal alloys used for tipping the ignition electrodes can likewise be the same ones that are already known for use in spark plugs, in particular iridium and alloys of iridium, in particular an alloy composed of platinum and iridium. The precious metal alloy may also contain relatively small quantities of one or more base metals, for example tungsten and/or zirconium, however.
Preferably, the composite part is manufactured through metal injection molding (MIM). This method is especially suitable for producing small bodies such as are required for tipping ignition electrodes.
Preferred exemplary embodiments will hereinafter be described in conjunction with the appended drawings, wherein like designations denote like elements, and wherein:
In order to produce the composite part 20, 40, 50, it is possible to first manufacture the base-metal green part and transform it into a brown part through debinding. Then it is possible to coat the brown part with the mixture of the powder composed of the precious metal or precious metal alloy and binder, debind the layer thus formed, and sinter the coated brown part. Debinding the base-metal green part before it is coated is more economical than waiting to debind it until after the coating with the precious metal or precious metal alloy, but either process may be used. The layer formed from the precious metal or precious metal alloy can be thin as compared to the thickness or the diameter of the base-metal green part or brown part. Consequently, it does not have to be debound in a separate step before the sintering, but instead—depending on the type of materials used—can also be debound by the sintering process itself.
As schematically represented in
An annular ground electrode, as well, can easily be placed in an injection mold as a core in such a manner that only an annular mold cavity remains free, the outer circumferential surface of which is bordered by the inner circumferential surface of the brown part or green part, so that the injected mixture, which contains the precious metal or precious metal alloy as powder and the binder, covers the inner circumferential surface of the brown part or green part and is subsequently adhered thereto by sintering.
In an analogous manner, a ring of ground electrodes that are meant to face the circumferential surface of the center electrode can also be placed in an injection mold as a core such that multiple relatively small mold cavities are formed into which the mixture that contains the precious metal alloy or precious metal as powder and the binder can be injected so that this mixture covers only the radially inward-facing end faces of the ground electrodes forming a ring.
As schematically represented in
As schematically represented in
Another variant involves producing the composite part by the means that the green part that contains the mixture composed of the base metal or base metal alloy and a binder is printed with the mixture that contains the precious metal or precious metal alloy and a binder, is debound, and then is sintered. This method is especially suitable for tipping an end face of an ignition electrode with precious metal or a precious metal alloy, where the ignition electrode can be a center electrode or a ground electrode or one of four side surfaces of a ground electrode that is rectangular in cross-section. The printing can be performed in automated fashion using a 3D printer or, if the surface to be printed is a flat surface, using a 2D printer.
In a variation of this method, the composite part can be produced in that not the green part, but rather the brown part that contains the base metal powder or the base metal alloy powder, is printed with the mixture composed of the precious metal or precious metal alloy and a binder, and then is sintered. In this case, the binder from the printed layer that contains the precious metal or precious metal alloy, can be debound, for example decomposed and expelled, through the sintering process.
The layer 28, 38, 48 formed that contains the precious metal or precious metal alloy can be thin. It does not necessarily have to cover the entire surface that can be subjected to ignition sparks in the spark plug. On the area bordering the spark gap of the spark plug (see
According to one non-limiting implementation of the present method, a metal injection molding (MIM) process is used to make a nickel-based cylindrical-shaped center electrode core, the center electrode core is debound to form a center electrode core brown part, one of the different embodiments disclosed above is used to apply a mixture having an iridium-based precious metal to a first end of the center electrode core brown part, the center electrode core brown part with the coated first end is sintered so as to produce a cylindrical-shaped composite center electrode piece with a diameter of approximately 0.8 to 3.0 mm and an iridium-based coating with a thickness of approximately 0.2 mm to 0.4 mm, and the composite center electrode piece is welded at an uncoated axial end surface to an uncoated axial end surface of a center electrode. If an embodiment of
It is to be understood that the foregoing is a description of one or more preferred exemplary embodiments of the invention. The invention is not limited to the particular embodiment(s) disclosed herein, but rather is defined solely by the claims below. Furthermore, the statements contained in the foregoing description relate to particular embodiments and are not to be construed as limitations on the scope of the invention or on the definition of terms used in the claims, except where a term or phrase is expressly defined above. Various other embodiments and various changes and modifications to the disclosed embodiment(s) will become apparent to those skilled in the art. All such other embodiments, changes, and modifications are intended to come within the scope of the appended claims.
As used in this specification and claims, the terms “for example,” “e.g.,” “for instance,” “such as,” and “like,” and the verbs “comprising,” “having,” “including,” and their other verb forms, when used in conjunction with a listing of one or more components or other items, are each to be construed as open-ended, meaning that the listing is not to be considered as excluding other, additional components or items. Other terms are to be construed using their broadest reasonable meaning unless they are used in a context that requires a different interpretation.
Number | Date | Country | Kind |
---|---|---|---|
10 2015 115 746.2 | Sep 2015 | DE | national |