The present disclosure generally relates to methods for manufacturing an ingredient or foodstuff package having distinct ingredient or foodstuff compartments. More particularly, the present disclosure relates to an ingredient package manufacturing method which enables package formation via tandem vertical form, fill, and seal assemblies.
Gasified candy, when exposed to moisture, tends to melt when in prolonged contact therewith. Given a sufficient amount of exposure to moisture (as for example, when exposed to one's mouth), the candy shells surrounding carbon dioxide gas bubbles essentially melt thereby releasing carbon dioxide gas, which action is often described as a popping sensation in one's mouth. The candy, to have its intended affect, should preferably be melted at the time of consumption and therefore separated from ingredients that may tend to otherwise prematurely melt the candy shells and release the popping gas. The candy, however, is often times enjoyed in conjunction with other food items or foodstuffs having significant moisture content such as pudding. In order to successfully serve both pudding and gasified candy for simultaneous consumption, it is necessary to separate the two ingredients prior to consumption. Packaging that enables the consumer to simultaneously and conveniently carry both ingredients in a single package for simultaneous consumption and enjoyment is therefore desirous.
Gasified candy and pudding are exemplary ingredients, however. Other foodstuffs or ingredients that may benefit from compartmentalized separation prior to consumption include any number of probiotic products and/or products containing active cultures such as yogurt or cottage cheese juxtaposed against other sugary ingredients or foodstuffs such as fruit, fruit-based ingredients, jams, and jellies. Some of the more pertinent prior art relating to packaging directed to compartmentalizing ingredients or constituent parts prior to active admixture and the like is described hereinafter.
U.S. Pat. No. 3,861,522 ('522 Patent), which issued to Llewellyn et al., discloses a Compartmented Package having Variable Volume Compartments. The '522 Patent teaches a compartmented package in which a longitudinal diaphragm, made of film, is sealed to the inner wall of a circular tubular member, also made of film, to form at least two continuous longitudinal linear junctures therebetween in a manner such that the volumes of the resulting compartments are variable. A two-compartment package having infinite relative volume variability in both compartments is stated to be the preferred embodiment.
U.S. Pat. No. 4,495,748 ('748 Patent), which issued to Rowell, discloses certain Containers and Machine for Making Them. The '748 Patent teaches a container preferably made from sheet plastics comprising a bag containing a tubular valve member, the bag being sealed with a seam at each end, the top seal having an opening therein for entry of an access tube into the valve member, and the valve member having a sealing seam which facilitates piercing of the access tube through the valve member into the bag. A second bag may be provided within the first bag. A machine is disclosed for making the containers continuously from sheets of material.
U.S. Pat. No. 4,681,228 ('228 Patent), which issued to Kerry et al., discloses a Package Filled with a Water Soluble Toxic Pulverulent or Granular Product. Kerry et al. note that some chemical products are so toxic that they must not come into contact with parts of the human body. The '228 Patent teaches a package of such a construction that during filling and transport thereof and during the release of product therefrom, the risk of anyone coming into contact with the product is restricted to a minimum, is characterized in that the product is situated in a closed inner container consisting of a water-soluble flexible material, and that the filled inner container is placed inside a closed outer container consisting of a flexible material which is resistant to water, both the inner container and the outer container consisting of a flexible tube which is closed near the two ends by a transverse joint and the end strips of the inner container are connected to the joining strips of the outer container in a manner such that between the contents of the inner container and the said joining strips there is a certain distance, and that a tear line is made in an exposed part of one of the end strips of the inner container.
U.S. Pat. No. 6,935,086 ('086 Patent), which issued to Benkus et al., discloses a double-bag package, and method for manufacturing the same, constructed by modification to existing Double Bag Package and Perforation Knife. The '086 Patent teaches certain form and fill packaging machines and perforation knives. In a preferred embodiment thereof, a double-bag package is produced from a single sheet of packaging film by feeding a roll of film having graphics printed sideways rather than vertically into a vertical form, fill and seal packaging machine and using a novel perforating/cutting knife to alternately cut and perforate transverse seals. The perforating/cutting knife has teeth in the shape of oblique triangular pyramids, with each tooth having three cutting edges. The perforating/cutting knife produces self-correcting T-shaped perforation patterns capable of capturing and redirecting errant tears for fail-safe directional separation.
International Publication No. WO 94/27886, authored by Richter et al., discloses a Container with Multiple Chambers, to Package Components Separately Prior to Use in Admixture. The Richter et al. publication teaches a package for accommodating a product having at least two components, which package has at least two self-contained chambers in which the individual components of the product can be stored in such a manner that they are hermetically separated from one another. The individual chambers are connected together in such a manner that they can be separated from one another only by destroying at least one chamber wall. The end regions of the chamber walls are in the form of a common closure for the individual chambers such that the individual chambers can only be opened simultaneously. In the preferred embodiment, the package comprises at least one folded carton having essentially a front and a back wall, side walls, bottom flaps and top flaps, inside which carton are arranged in a fixed manner at least two tube-like inner sachets each of which accommodates one of the components directly and which represent the chambers for the individual components, and the top end regions of which that project out of the inside of the folded carton form the common closure after the inner sachets have been filled separately.
From a review of these publications and other prior art generally known in the relevant art, it will be seen that the prior art does not teach a package for coaxially aligning and compartmentalizing constituent ingredients of a final mixture. Further, the prior art does not teach certain methodology for finally serving foodstuffs or presenting ingredients by axial displacement relative to package assembly, whereby plural foodstuffs or ingredients are coaxially presented for mixture at the time of consumption. The prior art thus perceives a need for a package assembly and methodology associated therewith that provides consumers with a novel means for receiving and consuming multiple ingredients, the admixture of which has arguably greater delectable value than the sum of its parts.
Accordingly, an ingredient separating package is provided, which functions to package and present plural ingredients which may, upon presentation, affect an opportune admixture. The coaxial and non-coaxial packages comprise at least one inner tube or inner barrier, an outer tube or barrier, first and second package ends, and a longitudinal package axis extending intermediate the first and second package ends. The inner and outer tubes may extend coaxially about the package axis. The inner tube receives an inner ingredient and the outer tube receives both the inner tube, laden with the inner ingredient, and an outer ingredient. The inner and outer tubes are sealed at the first and second package ends. The inner tube thereby prevents untimely ingredient inter-contact, the outer tube thereby seals the coaxial package from ambient matter such as air, debris, or other matter that may be considered problematic to affect a proper ingredient admixture.
The inner and outer tubes may be sealed to one another at the first and second package ends and may comprise certain manually enabled, end-opening structure as may be preferably defined by state of the art singular, paired, continuous, or skipped laser scoring. Thereby, the user may selectively unseal or open a select package end (typically the top package end as directed by external graphical indicia) and coaxially dispense the inner and outer ingredients for further effect or action.
Certain methodology is further presented as reflective of the disclosed structures in terms of coaxial and non-coaxial ingredient presentation, foodstuff service, and package manufacture. In this regard, the that ingredient packages may be finally formed by first forming an ingredient-receiving inner tube, the inner tube having first and second inner tube ends and a longitudinal tube axis, the first inner tube end being sealed, the second inner tube end being open. A first ingredient may then be properly deposited into the inner tube via the second inner tube end, the first ingredient extending in radial adjacency to the tube axis. A matter-receiving outer tube is also be formed, which outer tube has first and second outer tube ends, the first outer tube end being sealed, the second outer tube end being open. A second ingredient and the inner tube may then be deposited into the outer tube via the second outer tube end, the inner and outer tubes and the first and second ingredients being substantially coaxial. The second inner and outer tube ends may then be simultaneously sealed to one another thereby finally forming a coaxial or non-coaxial ingredient package.
Referring now to the drawings with more specificity, a preferred methodology for manufacturing the ingredient or foodstuff package assembly is generally depicted in
As is well known in the arts, VFFS packaging machines or assemblies are commonly used for forming, filling and sealing packages of snack foods and the like. Such packaging machines or assemblies commonly direct (as at vector arrows 50) certain packaging film 51 (as pre-selected or engineered for preferably packaging the target foodstuff or ingredient) from a sheet roll 52 and forms the film 51 into a vertical tube around a product delivery cylinder or collar 53 as generally depicted and referenced in the noted figures. The vertical tube is then typically either vertically lap-sealed or vertically fin-sealed along its length to form a back seal. In this case, a lapped back seal or lap seal is preferably formed as at 54 to finally form the cylindrical superior tube 11 as generally depicted and referenced in
After forming the back seal, a typical VFFS machine or assembly directs (as at vectors 60) a pair of heat-sealing jaws or facings 56 against the tube to form a transverse seal 57 as further illustrated and referenced in the noted figures. This transverse seal 57 acts as the top seal on the inferior package as well as the bottom seal on the superior package being filled and formed above. The product to be packaged, such as certain foodstuffs or ingredients, is dropped through the product delivery cylinder or collar 53, into open-ended tube, and is held within the tube above the bottom transverse seal in substantially uniform radial adjacency to a longitudinal packaging axis. After the open-ended tube has received certain ingredients, the film tube is displaced downward to draw out another package length. A transverse seal is formed above the product, thus sealing it within the film tube and forming a package of product. It may be seen from an inspection of
Notably, from an inspection of the figures, it will be readily understood that the drawings are simplified, and do not show certain support structures that typically surround such machines or assemblies. It will be further seen, however, that packaging film 51 is taken from a sheet roll 52 and passed through tensioners that keep the film 51 taut. The film then passes over a former, which directs the film into a vertical tube around a product delivery cylinder or collar 53. In this case, as the inner tube 11 is pulled or directed downward by drive belts 58, the inner tube of film is sealed along its length by a lap sealer 61 thereby preferably forming lapped back seal 54. The machine then applies a pair of heat-sealing jaws 56 against the tube to form transverse seal 57.
As earlier specified, this transverse seal 57 acts as the top seal on the inferior package below the sealing jaws 56 (as comparatively depicted in
The method of manufacture disclosed may thus be said to comprise the steps of vertically sealing longitudinal edges of a first or inner packaging material thereby forming a first tubular sleeve such as inner tube 11, having a superior and inferior open end. After forming the first tubular sleeve, the inferior end thereof is preferably transversely sealed, thereby forming an open-ended inner foodstuff-receiving compartment. A first foodstuff or ingredient may then be deposited into the open-ended inner foodstuff-receiving compartment, after which the inner foodstuff-receiving compartment may be downwardly displaced to a tube-encasing position 62 as generally referenced in
Once the inner foodstuff-receiving compartment or package 27 is received at the tube-encasing position, a second outer tubular sleeve such as outer tube 12 may be formed about the inner foodstuff-receiving compartment by vertically sealing the longitudinal edges of a second packaging material at the tube-encasing position. The second or outer tubular sleeve is thereby left with opposite sleeve ends open at this juncture. The inferior end of the second tubular sleeve may then be preferably transversely sealed to form an open-ended outer foodstuff-receiving compartment, into which second foodstuff or ingredient 28 may be deposited. After the second foodstuff is deposited, the superior ends of the inner and outer foodstuff-receiving compartments may be simultaneously sealed to one another as at 58 (it being noted that transverse seal 57 is preferably sealed to seal 58 during this process) to finally form coaxial foodstuff package assembly 10. The assembly 10 may then be downwardly displaced to a cut off position, whereafter the package assembly 10 may be cut or otherwise removed from the first and second packaging materials adjacent the superior ends of the inner and outer tubes for removing the coaxial foodstuff package from the first and second packaging materials.
Stated another way, the method of manufacturing the coaxial ingredient package may be said to comprise the steps of coaxially aligning first and second ingredient-delivery cylinders or collars (such as collars 53) about a vertical tube-forming axis 101 as depicted and referenced in
After sealing the first inner tube end, a first ingredient may be delivered and deposited into the inner tube via the first ingredient-delivery cylinder and the still open second inner tube end. The inner tube and the first ingredient may then be coaxially displaced through the second ingredient-delivery cylinder, whereafter a matter-receiving outer tube (such as outer tube 12) may be formed about the inner tube via the second ingredient delivery cylinder. Similar to the inner tube, the outer tube is also preferably formed from a continuous sheet of second packaging film, the second packaging film having inner and outer second film surfaces, the outer second film surface being pre-printed or pre-provided with graphics and similar other markings for notifying onlookers of package contents. The inner second film surface is preferably vertically fin-sealed unto itself, resulting in an outer tube having first and second open outer tube ends.
Before delivering and depositing a second ingredient to the outer tube, the first end thereof may be preferably sealed about the first inner tube end. Notably, the second ingredient is deposited about the inner tube via the second ingredient-delivery cylinder and the second outer tube end, whereafter the second inner and outer tube ends may be sealed to one another thereby finally forming a coaxial ingredient package. The finally formed coaxial ingredient package may then be cut or otherwise removed from the first and second packaging films. The coaxial ingredient package may be coaxially displaced to a package removal position as at reference numeral 64 in
It is contemplated that the finally formed coaxial package assembly 10 is designed primarily for compartmentalizing and packaging ingredients or foodstuffs in coaxial relation to one another and for presenting the coaxially aligned ingredients or foodstuffs to the consumer. In this last regard, it has been noted that certain foodstuffs and/or ingredients are often best stowed or compartmentalized until the time of consumption or admixture. Thus, the coaxial ingredient package assembly may well function to package plural ingredients or foodstuffs in distinct coaxial compartments and preferably comprises at least one plastic, pliable, or pinchable inner foodstuff barrier or tube 11 as illustrated and referenced in
Turning now to the embodiment of
The preferred packaging films or material structures or layers used in the construction will necessarily be based on the product(s) or ingredients being packaged by the barriers of the package. The material outer layer of the inner tube is preferably compatible with the material inner layer of the outer tube. In this regard, it is contemplated that an ethylene vinyl acetate copolymer (EVA) sealant layer may be preferably added to the outer layer of the inner tube and also added as an inner layer of the outer tube. A foil or metalized film layer may be preferably sandwiched intermediate sealant layers to affect a more robust oxygen/moisture barrier layer. Alternatively, it is contemplated that the inner tube may incorporate an extruded polypropylene (PP) or low density polyethylene for a sealant layer as well as having an extruded PP sealant layer on the outer tube.
The inner ingredient or foodstuff barrier 11 is preferably formed by way of first or superior VFFS assembly 15 as generally depicted in
The film composition of inner foodstuff barrier 11 generally depicted in
In this regard, it is noted that state of the art techniques for forming a preferred longitudinal lap seal may involve the use of OPP or metalized polyethylene terephtalate (PET) as an intermediate layer of a 3-layer lamination, the outer sealant layers in this case preferably being formed from EVA sealant. Excellent results may be achieved by utilizing OPP or PET coated with an EVA type sealant as the outside or outermost surface 16 of barrier 11 insofar as the same enables state of the art heat sealing of the longitudinal back seal (or transverse seal) of the film. This type of sealant further ensures a more cooperative seal with the inner most sealant layer of the outer tube. Notably, there is no requirement for an ink layer for the inner ingredient or foodstuff barrier 11 as viewable graphics and the like may be considered superfluous, the same being otherwise hidden or blocked from view by the outer barrier 12.
With reference to
It is contemplated that inner foodstuff barrier 11 may preferably comprises a longitudinal lap seal 20 of the type generally described and depicted in
The outer foodstuff barrier 12 is preferably formed by way of second or inferior VFFS assembly 19 tandemly juxtaposed in inferior adjacency to assembly 15 as further generally depicted in
The film composition of outer foodstuff barrier 12 generally depicted in
In this last regard, it will be noted that a longitudinal fin seal 22 is to be preferred for longitudinally sealing the back of outer foodstuff barrier 12, which fin seal 22 is generally depicted in
The fin seal variation generally depicted also provides that the product to be placed in the formed package will be protected from the ink layer by the inside surface or layer 23. Again, the outside layer 24 does not normally contact any packaged foodstuff product. In the preferred embodiment depicted in
It should perhaps be reiterated that the packaging materials that are fed into the form, fill and seal machines shown in
As may be further seen from an inspection of
Finally, the first and second package ends 13 are preferably heat-pressure sealed to finally seal the package assembly 10. The sealed first and second package ends 13 effectively function to selectively prevent contact intermediate the inner and outer foodstuffs 26 and 28 and axially ambient matter or matter axially external to package assembly 10. In this last regard, the notion of selectively preventing contact intermediate the inner and outer foodstuffs 26 and 28 and axially ambient matter is meant to convey that the user may elect to enable contact therebetween, as for example, by opening the package assembly 10. It is thus contemplated that the coaxial foodstuff package or package assembly 10 may further preferably comprise certain manually-enabled, end-opening means for enabling a user to manually (in other words, with one's hand and/or fingers) open a select package end, the select package end being selected from the group consisting of the first and second package ends 13, but which may preferably be situated adjacent the top end as directed by implied by graphical indicia viewable via the outer package structures.
It is further contemplated that the end-opening means may be defined by certain select scoring as selected from the group comprising a singular score line 30 as generally depicted in
In this last regard, it is contemplated that the preferred opening technology take the form of or be defined by a laser score. The laser score will be both on the inner tube 11 and the outer tube 12. It is further contemplated that the laser score may be preferably applied while the packages are in the web configuration, prior to being formed into a tube. As heretofore stated, the score can be of many different designs; a solid score, a skip score (as shown by dotted lines), a double score where the scores are preferably about 1 mm apart making it easier to align the inner and outer scores for a clean removal of the select package end (i.e. the top) of each tube. By using a laser score the entire select package end (i.e. the top) of the tube can be removed, making the dispensing of the ingredients or inner and outer foodstuffs 26 and 28 inside much cleaner or with minimal axial obstruction(s).
The present disclosure further provides certain foodstuff service and/or presentation methodology inherently taught by the structure(s) heretofore disclosed and described. For example, a certain foodstuff service method is contemplated whereby contact between plural foodstuffs may be prevented prior to final foodstuff service. In this regard, the method is contemplated as comprising certain steps including, aligning an inner foodstuff such as inner foodstuff 26 about a foodstuff axis such as package axis 100. The step of inner foodstuff alignment may be structurally achieved by bounding or packaging the inner foodstuff with a first foodstuff barrier such as inner foodstuff barrier 11 as generally depicted in
After the respective foodstuffs are axially aligned, the same may be sealed from ambient matter (such as air or debris) for stowing and/or transporting the ingredients or foodstuffs and the foodstuffs may be unsealed or opened to ambient matter (such as a plate or one's mouth) prior to final foodstuff service. After opening or unsealing the otherwise sealed foodstuffs, it is contemplated that the methodology may involve the step of finally serving the inner and outer foodstuffs to the foodstuff consumer, as for example, by setting the coaxially aligned foodstuffs in front of the foodstuff consumer or by dispensing the foodstuffs from coaxial alignment directly to the foodstuff consumer, as for example, by dispensing the contents directly into one's mouth as generally depicted in
Notably, the step(s) of foodstuff alignment and foodstuff sealing may be defined by the process of packaging the foodstuff in respective foodstuff sheathing such as inner and outer foodstuff barriers 11 and 12. Thus, the methodology here contemplated may further involve the step of preventing foodstuff contact during the step of coaxial foodstuff alignment. Further, the inner and outer foodstuffs may be simultaneously and axially displaced during final foodstuff service as for example, by squeezing, pinching (as at 37 in
In this last regard, it is contemplated that the user may elect to allow gravitational force to pull foodstuffs or other ingredient contents from the inner and outer chambers 38 and 39 as generically depicted in
Typically, after having been finally served the foodstuffs, the user may elect to mix the foodstuffs out of coaxial or concentric alignment. This may be achieved in any number of ways, not the least of which is via mouth-mixing the foodstuffs as implicitly shown in
It is contemplated that the process of presenting foodstuff(s) according to the teachings herein, differ somewhat from foodstuff service methodology heretofore set forth. The presentation method or method for coaxially presenting plural foodstuffs to a foodstuff consumer is believed to essentially comprise the steps of coaxially aligning a plurality of foodstuffs about a foodstuff axis. The process of coaxial foodstuff alignment is believed to set up the process of axial displacement of foodstuffs along the foodstuff axis, which process, in turn, sets up the process of coaxial presentation of foodstuffs to a foodstuff consumer. In other words, after axially displacing the coaxially aligned foodstuffs, the same may be presented to the foodstuff consumer. As before, the plural foodstuffs may be prevented from contacting one another during coaxial foodstuff alignment. Further, should the foodstuffs benefit from being sealed from ambient matter (as for example for stowage on a market shelf), it is further contemplated that the foodstuffs may be sealed from ambient matter and opened prior to axial foodstuff displacement, the displacement may be effectively achieved or effected by way of pinching action or other forceful means as heretofore contemplated.
While the above description contains much specificity, this specificity should not be construed as limitations on the scope of the invention, but rather as an exemplification of the invention. The disclosed preferred embodiments have illustrated a two chamber foodstuff package. However, a foodstuff package comprising more than two distinct compartments according to the teachings set forth herein is contemplated. Should the manufacturer elect to form three or more compartments, it is contemplated that inner barriers should take the form of inner foodstuff barrier 11 and the outermost barrier should take the form of outer foodstuff barrier 12.
Further, a foodstuff or other ingredient package for packaging and presenting plural foodstuffs or ingredients is disclosed. The package essentially comprises at least one inner foodstuff or ingredient barrier (such as barrier 11), an outer foodstuff or ingredient barrier (such as barrier 12), first and second package ends, and at least one longitudinal package axis (such as axis 100). The inner foodstuff barrier extends intermediate the outer foodstuff barrier and the package axis for receiving an inner foodstuff and forming an inner food package or packages. The outer foodstuff barrier receives the inner food package(s) and an outer foodstuff, which essentially fills the interstitial cavity intermediate the outer barrier and the inner food package(s). The inner foodstuff barrier essentially functions to prevent contact intermediate the inner and outer foodstuffs, and the outer foodstuff barrier essentially functions to prevent contact intermediate the outer foodstuff and radially ambient matter.
The first and second package ends are sealed for selectively preventing contact intermediate the inner and outer foodstuffs and axially ambient matter. In this regard, it is contemplated that a multiaxial foodstuff package may be gleaned from the teachings set forth herein wherein the foodstuff package may comprises plural inner foodstuffs bound by certain inner foodstuff barriers and a single outer foodstuff which fills the interstitial space intermediate the inner foodstuff barrier(s) and the outer foodstuff barrier. Further, in terms of a foodstuff presentation method, the method for presenting plural foodstuffs to a foodstuff consumer may be said to comprise the steps of axially displacing axially aligned plural foodstuffs along the foodstuff axes for axially presenting plural foodstuffs to a foodstuff consumer; and presenting the axially aligned and axially displaced foodstuffs to the foodstuff consumer. This method may be preferably defined by coaxially aligning the plural foodstuffs or ingredients prior to axial displacement.
It will be seen that the types of ingredients storable in the package do not necessarily have to be overtly reactionary with one another as would be the case with gasified candy and moisture-laden ingredients such as pudding. The package may well function to separate ingredient pairs and the like such as cottage cheese on the outside and a fruit sauce on the inside (similar to the ingredients of BREAKSTONE'S®/KNUDSEN® COTTAGE DOUBLES® brand(s) snack packs); chocolate sauce on the outside and marshmallow cream on the inside; pudding on the outside and whipped cream on the inside; peanut butter on the outside and jelly on the inside; ketchup on the outside and mustard on the inside; and pudding on the outside and gasified candy on the inside. The package can be manufactured so that the contents including both foodstuffs can be visible through the transparency of the film used for the package or the exterior product can be partially seen through the transparency of the film so that the outer package can also carry the brand name and advertising of the manufacturer as needed.
The foregoing may be said to further teach or disclose certain methodology for manufacturing the coaxial ingredient package. In this regard, it is noted that coaxial ingredient package may be finally formed by first forming an ingredient-receiving inner tube, the inner tube having first and second inner tube ends and a longitudinal tube axis, the first inner tube end being sealed, the second inner tube end being open. A first ingredient may then be properly deposited into the inner tube via the second inner tube end, the first ingredient extending in radial adjacency to the tube axis. A matter-receiving outer tube may also be formed, which outer tube has first and second outer tube ends, the first outer tube end being sealed, the second outer tube end being open. A second ingredient and the inner tube may then be deposited into the outer tube via the second outer tube end, the inner and outer tubes and the first and second ingredients being substantially coaxial. The second inner and outer tube ends may then be (simultaneously) sealed (to one another) thereby finally forming a coaxial ingredient package.
It is further contemplated that the inner and outer tubes may be vertically and/or coaxially aligned before depositing the second ingredient and the inner tube into the outer tube. Further, it is noted that the finally formed coaxial ingredient package has first and second package ends. In this regard, it is contemplated that a select package end may be scored after sealing the second inner and outer tube ends, the select package end being selected from the group consisting of the first and second package ends. Preferably, the inner tube is lap-sealed during inner tube formation, whereas the outer tube may be selectively sealed during outer tube formation. In this regard, it is contemplated that the outer tube may be sealed as selected from the sealing type group consisting of lap sealing and fin sealing.
It is further contemplated that the inner tube with upper and lower ends open may be fed through the second forming collar and make and the bottom seals of the inner and outer tube may be formed simultaneously. The inner and outer product or first and second ingredients could then be fed or deposited into the inner and outer tubes via the open ends at the same time and the top seal for both the inner and outer tubes could be made at the same time. This approach may help the filling process if the inner product would have the tendency to bow out and choke off the outer package.
It is thus contemplated that the method of manufacturing a unidirectional or coaxial ingredient package, which method may comprise the steps of initially forming at least one ingredient-receiving inner tube and an outer ingredient-receiving outer tube (for receiving the inner tube(s)), the inner and outer tubes each having first and second tube ends and unidirectional tube axes. Notably, the unidirectional tube axes may be preferably coaxially aligned for forming a coaxial unidirectional package. After the inner and outer tubes are formed, first inner and outer tube ends may be (simultaneously) sealed, thereby leaving the second inner and outer tube ends open for subsequent ingredient deposition. After depositing a first ingredient into the inner tube and a second ingredient into the outer tube via the open second tube ends, the second inner and outer tube ends may be sealed for finally forming the unidirectional ingredient package.
Accordingly, although the invention has been described by reference to preferred embodiments, certain alternative embodiments, and certain methodology, it is not intended that the novel assembly or methods be limited thereby, but that modifications thereof are intended to be included as falling within the broad scope and spirit of the foregoing disclosure, the following claims and the appended drawings.