Accordingly, the present invention provides an improved method for manufacturing an optical preform by carrying out one or more chemical vapor deposition reactions in a substrate tube by (i) supplying one or more doped or undoped glass-forming precursors (i.e., the reactants) to a substrate tube and (ii) effecting a reaction between these reactants to form one or more glass layers on the interior of the substrate tube via the creation of only a pulsed plasma zone in the interior of the substrate tube. This pulsed plasma zone is realized in pulses, typically using a frequency at least 100 Hz, with a maximum plasma power being active each pulse cycle for a period of between 0.001 and 5 milliseconds. In certain embodiments, the pulse frequency is at least 1500 Hz.
The present inventors have found that when high deposition rates are sought at increased microwave power, a considerable part of the microwave energy is eventually converted into heat. This can lead to overheating of equipment components used in the PCVD process, which in turn requires additional cooling. Another drawback of such a temperature increase is a reduced incorporation efficiency of dopants in the deposited glass layers, particularly with respect to germanium dioxide.
In comparison with a continuous PCVD process, the present invention makes it possible to achieve high deposition rates in the PCVD process while using a lower average microwave power. As a result, the temperature in the interior of the substrate tube decreases such that the incorporation efficiency of dopants in the glass layers is not adversely affected.
According to the present invention, the plasma power in the aforementioned step (ii) is set to a value between a maximum power and a value lower than this maximum power. In other words, during the deposition process the plasma power is controlled in a pulsed manner between a maximum power and a relatively lower power (i.e., less than the peak plasma power that is set for the glass deposition).
In this regard, the phrase “maximum plasma power” and the like should be understood to mean the power that would be set for a specific deposition rate if a constant-plasma PCVD process were employed (e.g., a PCVD process that maintains a substantially constant plasma intensity during the deposition of glass layers on the interior of the substrate tube). In other words, the “maximum plasma power” (or “peak plasma power”) defines plasma power Pmax as depicted in
By way of example, the peak power used in the pulsed plasma zone is set so that the deposition rate of the glass layers is at least 2.0 g/min (e.g., about 3.2 g/min or more).
According to the present invention, the period during which the plasma power is set to a maximum power (i.e., period A in
According to the present invention, the length of the plasma in the interior of the substrate tube is about 15 to 30 centimeters, whereas the substrate tube itself has a length of about 100 to 120 centimeters.
During the aforementioned deposition step (ii), the resonator, in which the plasma is generated, travels back and forth along the length of the substrate tube between two points, namely a first reversal point located at the supply side of the substrate tube and a second reversal point located at the discharge side of the substrate tube.
To obtain a stable PCVD process, the plasma power is typically set to a value below the maximum power for a period of 5 milliseconds or less, more typically 1 millisecond or less. For example, as schematically depicted in
The plasma power during period B is typically less than 50 percent of the plasma power employed during period A, more typically less than 25 percent (e.g., 10 percent or less of the plasma power used during period A). Furthermore, during period B it is possible to set the plasma power to zero (i.e., “off”).
The present inventors have found that, as compared with a constant-plasma PCVD process (i.e., employing constant, maximum plasma power), the pulsed-plasma PCVD process achieves comparable glass deposition rates but with significantly less heat generation. The reduced heat improves the incorporation efficiency of dopants (e.g., germanium dioxide). Moreover, the present method makes it possible to increase the deposition rate without overheating the equipment used therewith.
In the specification and the figures, typical embodiments of the invention have been disclosed. The present invention is not limited to such exemplary embodiments. Specific terms have been used only in a generic and descriptive sense, and not for purposes of limitation. The scope of the invention is set forth in the following claims.
Number | Date | Country | Kind |
---|---|---|---|
1032463 | Sep 2006 | NL | national |