The invention relates to an underlay material to be set under a floor surface material, such as parquet and a laminate, and to its manufacturing method. More specifically, the invention relates to such an underlay material made up of two material layers.
Regarding the underlay material for parquets and laminates, it is prior known to employ an underlay material made up of two material layers, said underlay material consisting of a substantially flat upper material layer, such as a plastic sheet, and of a flexible material, such as a cellular plastic material, bonded under the plastic sheet. This type of underlay material is typically placed under parquet or a laminate and on top of a concrete floor surface, whereby the upper material layer provided by the plastic sheet of the underlay material functions as a vapor barrier against moisture rising from concrete or condensing in concrete. The underlay material can also be used on top of a wood foundation.
One such underlay material and its manufacturing method is known from patent publication WO 2008/053077. The underlay material disclosed in the publication comprises a flexible cellular plastic layer, said cellular plastic layer having its bottom surface formed with a protrusion pattern for providing an air space between a concrete surface and the cellular plastic layer, and on top of the cellular plastic layer is laid a dense plastic sheet for a moisture insulator and vapor barrier.
U.S. Pat. No. 6,837,014 discloses an optional underlay material, wherein the underlay material is composed of a membrane material, said membrane material having its bottom surface formed with projections of a cellular plastic material for providing an air space between a concrete surface and the membrane material. In the solution according to the publication, the membrane material can be for example plastic, paper or board.
A problem with the foregoing solutions is however the relatively complicated manufacturing process necessitated thereby. In addition, the achievement of a sufficient long-term durability as well as appropriate flexibility is problematic in the manufactured underlay material. Also, the establishment of appropriate air ducts and spaces to enable a removal or expulsion of moisture in several different directions is inconvenient and leads to a high-cost manufacturing process.
What has now been discovered in order to overcome this problem is a new manufacturing method for producing such an underlay material made up of a sheet material and a flexible cellular plastic material.
The manufacturing method of the invention comprises bonding a cellular plastic material to a sheet material simultaneously with the establishment of air provisions to be formed in the cellular plastic material, whereby melting of the cellular plastic material also bonds the cellular plastic material to the sheet material for providing a uniform underlay material. Hence, the underlay manufacturing process is expedited and simplified as a separate operation for bonding the materials to each other is no longer necessary.
Preferably, the manufacturing method of the invention is carried out by conveying the material layers through between two rollers or rolls placed in opposition to each other, whereby the roll placed against the cellular plastic material layer has its surface provided with protrusions, said protrusions of the roll, or the entire roll, having been heated. Thus, the heated roll protrusions, along with pressing between the rolls, melt the cellular plastic material layer at the protrusions to form grooves in the cellular plastic material and press the melted cellular plastic material to the attachment with the sheet material, thus bonding the molten cellular plastic material thereto.
The roll placed against the cellular plastic material has its protrusions preferably designed in view of establishing a uniform air provision pattern on the surface of cellular plastic. This air provision pattern established on the cellular plastic material surface can be for example a pattern made up of two sets of continuous and parallel grooves, said grooves of different sets crossing each other. Hence, the established air provision pattern made up of grooves for a cellular plastic material may comprise for example a plurality of squares or lozenges defined by the grooves. Other types of patterns made up of air provision grooves can also be used, but in any case, the grooves preferably establish a continuous air provision structure across the entire underlay material.
The sheet material and the cellular plastic material useful in the solution of the invention are material webs, whereby these material webs are bonded in connection with manufacturing for an underlay material in a web-like form.
The sheet material may consist for example of plastic, paper and cardboard, such as for example polyethylene or polypropylene. Preferred material thicknesses for a sheet material are 0.01-0.2 mm.
The cellular plastic material may consist of any appropriate cellular plastic, such as for example polyethylene. The cellular plastic material has a material thickness preferably within the range of 1-5 mm.
The underlay material according to the invention has preferably a total thickness of 1-5 mm.
More specifically, the manufacturing method of the invention is characterized by what is presented in the characterizing clause of claim 1, as well as the underlay material of the invention by what is presented in the characterizing clause of claim 6.
The invention will now be described more precisely by way of example with reference to the accompanying figures, in which
In the arrangement of
Either the entire roll 6 or the protrusions 7, 7′ of the roll 6 have been heated, for example with heating resistors, the cellular plastic material 3 set against the protrusions 7, 7′ being melted thereby.
The manufacture of an underlay material 8 proceeds in the sequence of
In the embodiment of
Temperature of the roll 6 and/or its protrusions 7, 7′ is set sufficiently high for melting the cellular plastic material 3. This temperature may also accomplish partial melting of the sheet material 1, which in turn enhances bonding of the cellular plastic material 3 to the sheet material 1. In order to prevent excessive melting of the sheet material 1, the roll 5 and/or its surface can be cooled as necessary. In view of melting for example a cellular plastic material of polyethylene, the temperature suitable for the roll 6 and/or its protrusions 7, 7′ is about 140° C.
The solution of the invention is not bound to the use of plastic membranes as a sheet material 1, but other suitable sheet materials can also be used, such as for example paper or cardboard.
The cellular plastic material 3 employed in the solution of the invention comprises preferably a suitable flexible foamed polymer, such as for example cellular polyethylene or polypropylene plastic 1-5 mm in thickness.
The finished underlay material 8 is preferably about 1-5 mm in thickness.
Regarding the embodiments shown in the figures and described above, it should be appreciated that these are just examples of solutions according to the invention and, as such, by no means limiting the invention. The scope of protection for the invention is defined in the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
20116234 | Dec 2011 | FI | national |
Number | Name | Date | Kind |
---|---|---|---|
3455772 | Mason et al. | Jul 1969 | A |
3881980 | Olson | May 1975 | A |
3979489 | Sprague | Sep 1976 | A |
6837014 | Virtanen | Jan 2005 | B2 |
20050158517 | Rives | Jul 2005 | A1 |
20060165949 | Segars et al. | Jul 2006 | A1 |
20070062139 | Jones | Mar 2007 | A1 |
20080010930 | Mao | Jan 2008 | A1 |
20100068469 | Wiemers | Mar 2010 | A1 |
20130227904 | Amend | Sep 2013 | A1 |
Number | Date | Country |
---|---|---|
1038661 | Sep 2000 | EP |
1038661 | Sep 2000 | EP |
2052732 | Feb 1990 | JP |
2008053077 | May 2008 | WO |
Entry |
---|
Finnish Search Report dated Sep. 27, 2012 in corresponding Finland Priority Application. |
International Search Report dated Mar. 25, 2013 in corresponding PCT application. |
U.S. Appl. No. 14/363,936, filed Jun. 9, 2014. |
Number | Date | Country | |
---|---|---|---|
20170151768 A1 | Jun 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14363936 | US | |
Child | 15432512 | US |