The present invention relates to a method for manufacturing a bonded magnet, in particular, a magnetized bonded magnet.
In recent years, in response to remarkable downsizing of electronic apparatuses, stepping motors and the like which are used in these apparatuses have been also miniaturized and reduced in diameter. With this, ring-shaped permanent magnets which are used as rotor have been also reduced in diameter. Thus, a magnetization pitch (a magnetization distance between poles) becomes narrow, causing a difficulty in multi-pole magnetization.
As a method for multi-pole magnetization, pulse magnetization is known in the art. In the pulse magnetization, when magnetizing a ring-shaped permanent magnet, a large pulse current is applied to a magnet wire. When a magnetization pitch becomes narrow with a reduction in diameter of ring-shaped permanent magnet, in magnetization fixtures under present circumstances, magnetic wires have smaller diameters. Thus, the magnetization fixtures have problems of difficulty in applying pulse current enough to magnetize magnetics. As a technique for improving the problems, a method that reduces a magnetic field for saturated magnetization by heating a magnetization subject to a high temperature of less than Curie point is known in the art [see, for example, Japanese Patent No. 2940048 (Patent Literature 1) and Japanese Unexamined Patent Application Publication No. 6-140248 (Patent Literature 2)]. Regarding a method for magnetization of permanent magnet, furthermore, there is known a permanent-magnet magnetization method by which a temperature of a magnetization subject is lowered from its Curie point or higher to less than its Curie point, and a permanent magnet continuously applies a magnetic field to a magnetization subject during such a temperature-lowering period [see, for example, Japanese Unexamined Patent Application Publication No. 2006-203173 (Patent Literature 3)].
However, the magnetization methods of Japanese Patent No. 2940048 (Patent Literature 1) and Japanese Unexamined Patent Application Publication No. 6-140248 (Patent Literature 2) do not provide sufficient magnetization characteristics. In addition, possibility of insulation breakdown cannot be avoided because electric current passes through a magnetic wire of a magnetization coil. Since a magnetization fixture is subjected to high temperature, its component parts, especially mold resin, is deteriorated to shorten the life of the magnetization fixture. According to a magnetization method of Japanese Unexamined Patent Application Publication No. 2006-203173 (Patent Literature 3), high magnetization characteristics are obtained in neodymium-iron-boron (Nd—Fe—B) bonded magnets. However, since an adjustable range of magnetization characteristics depends on physical properties of magnetic particles, such a range typically becomes narrow and leads to difficulty in obtaining desired magnetization characteristics. Furthermore, because of increases in rare-earth prices, requests have been made of cheaper rare-earth bonded magnets having high characteristics.
The present invention has been made in consideration of such a situation, and an object of the present invention is to provide a method for manufacturing a bonded magnet in a simple manner with lower costs, where the bonded magnet has a wide adjustable range of magnetization characteristics while keeping high magnetization characteristics.
In order to attain the above object, in a first aspect of the present invention, a method for manufacturing a magnetized bonded magnet comprises the steps of: arranging means for magnetizing a magnetic field near a non-magnetized bonded magnet; heating the non-magnetized bonded magnet to a temperature of a Curie point thereof or higher; and continuously magnetizing the magnetic field to the non-magnetized bonded magnet by the means for magnetizing the magnetic field while cooling the non-magnetized bonded magnet reached at the temperature of the Curie point thereof or higher to a temperature of less than the Curie point, wherein the non-magnetized bonded magnet is a rare-earth iron bonded magnet including two or more different rare-earth elements in magnet powder thereof.
In a second aspect of the present invention, in the method according to the first aspect, the non-magnetized bonded magnet is formed in a ring shape and surrounded with a plurality of the means for magnetizing magnetic field so as to be multi-pole magnetized.
In a third aspect of the present invention, in the method according to the first or the second aspect, the rare-earth elements may have an atomic percentage of 12 at % or more in total amount.
In a fourth aspect of the present invention, in the method according to the first aspect, the magnet powder may have an intrinsic coercive force of 716 kA/m (9 kOe) or more.
In a fifth aspect of the present invention, in the method according to the first or the second aspect, the rare-earth elements may include neodymium (Nd) and prasodymium (Pr).
In a sixth aspect of the present invention, in the method according to the fifth aspect, the Nd and the Pr may have a mixing ratio of 5 at % to 50 at % as a substitution amount of Pr with respect to an amount of Nd.
In a seventh aspect of the present invention, in the method according to the first aspect, the non-magnetized bonded magnet may be free of cobalt (Co).
According to the present invention, a decrease in Curie temperature, a decrease in thermal demagnetization characteristics, and so on can be utilized to obtain a method for manufacturing an industrially useful bonded magnet (with high magnetic characteristics, comparatively wide adjustable range of magnetization characteristics, and low costs).
a is a plan view of a magnetization fixture and a bonded magnet according to an embodiment and
Hereinafter, a method for manufacturing a magnetized bonded magnet according to the present invention will be described in detail with reference to embodiments. In
A magnetization fixture 10 includes a nonmagnetic block (e.g., stainless steel block) 12 having a circular magnetization subject housing hole 16 in which a bonded magnet 14 is removably inserted, and ten square section grooves 18 radially extending from an outer side of the magnetization subject housing hole 16 at equal angled intervals. Magnetization permanent magnets 20 are respectively disposed in the grooves 18 and serve as means for magnetizing a magnetic field, having a higher Curie point than the bonded magnet 14 and having a square-section bar shape. For example, the magnetization permanent magnet 20 may be a samarium cobalt SmCo sintered magnet having a Curie point of about 850° C.
Hereinafter, described is a method for manufacturing a multi-pole magnetized bonded magnet 140 from the bonded magnet 14. The method for manufacturing the multi-pole magnetized bonded magnet 140 comprises the steps of: heating the bonded magnet 14 to a temperature of its Curie point or higher after arranging the magnetization permanent magnets 20 near the bonded magnet 14; and magnetizing the bonded magnet 14 by continuously magnetizing a magnetic field to the bonded magnet 14 by the magnetization permanent magnet 20 while cooling the bonded magnet 14 reached at the temperature of the Curie point thereof or higher to a temperature of less than the Curie point.
As the bonded magnet 14, prepared is a rare-earth iron bonded magnet that includes two or more different rare-earth elements. Inclusion of two or more different rare-earth elements lowers refinement costs. Thus, a rare-earth iron bonded magnet can be provided in reasonable price. Table 1 represents magnetic characteristics of a rare-earth iron boron magnet (R2Fe14B). For example, a rare-earth iron bonded magnet used is one in which part of neodymium Nd (hereinafter referred to merely Nd) having a highest saturation magnetization is partially substituted with an element having magnetic characteristics similar to those of yttrium Y, cerium Ce, praseodymium Pr (hereinafter referred to merely Pr), or the like while keeping its magnetic characteristics less affected by such substitution. Here, a costly preferable combination is a combination similar to a naturally-occurring form as much as possible and more preferably a combination of elements each having high magnetic characteristics. Particularly, both Nd and Pr have magnetically similar physical properties, and thus a decrease in static magnetic characteristics can be suppressed to the minimum. As long as Nd and Pr have a mixing ratio of preferably 5 at % to 50 at %, more preferably 10 at % to 35 at % as a substitution amount of Pr with respect to an amount of Nd, the ratio approximates one produced in nature and cost reduction can be thus attained.
In the heating step, the bonded magnet 14 is inserted in the magnetization subject holding hole 16 while being heated at a temperature higher than the Curie point. In the magnetization step, a magnetization magnetic field is applied to the bonded magnet 14 by using the magnetization permanent magnet 20. Furthermore, the bonded magnet 14 is cooled to a temperature of the Curie point of the bonded magnet 14 or less while being placed in the magnetization fixture 10, followed by being pulled out of the magnetization fixture 10. For example, when the Curie point of the bonded magnet 14 is set to Tc, it is particularly preferable that the bonded magnet 14 be heated to a temperature of (Tc+30° C.) or more and then cooled to a temperature of (Tc−50° C.) in a magnetization magnetic field. Here, the heating may be performed by any means, such as resistance heating, high-frequency heating, laser heating, high-temperature gas-flow heating, or heating in high-temperature liquid. Among them, particularly preferable is the high-frequency heating method that allows short-time heating. The cooling may be performed by any method, such as natural radiation cooling, water cooling, air cooling, compulsive radiation cooling (e.g., gas spraying), and heating temperature adjustment. If there is a need of working under inactive atmosphere, an inactive gas flow is performed. A moving mechanism (not shown) allows each of the bonded magnet 14 and the multi-pole magnetized bonded magnet 140 to be easily, quickly inserted in the magnetization subject holding hole 16 of the magnetization fixture 10 and easily, quickly pulled out of the magnetization subject holding hole 16.
By carrying out the steps described above, an outer peripheral surface of the permanent magnet, the bonded magnet 14, generates a magnetic pole corresponding to the magnetized pole. As a result, a multi-pole magnetized bonded magnet 140 can be obtained.
Evaluation of magnetization characteristics can be quantitatively performed by measuring a surface inductive flux with a tesla meter.
Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples. Bonded magnets 14 used in the following examples and comparative examples were compression-molded bonded magnets each having an external diameter φ of 2.6 mm, an inner diameter φ of 1.0 mm, and a thickness of 3 mm. In other words, the magnets used have the same dimensions and weight (i.e., their densities are equal). Furthermore, these magnets 14 were subjected to 10-pole magnetization (pole pitch 0.8 mm) from their outer peripheries, showing magnetization characteristics. Magnet powder was molded by pulverizing a rapidly cooled thin strip and mixing the magnet powder with epoxy resin as binder resin in an amount of 2.5 wt %. Magnetization was performed using the magnetization fixture 10 at a heating temperature of 380° C. for 3 sec., and then cooled to a thermostatic temperature. After 6 seconds, a multi-pole magnetized bonded magnet 140 was pulled out and obtained.
As described below, changes in magnetization characteristics depending on a total amount of rare-earth elements were measured for Example 1, Example 2, and Comparative Example 1. Thermostatic temperatures in these examples were 50° C., respectively.
A rare-earth iron boron bonded magnet 14 using rare-earth elements Nd and Pr was employed and a total amount of the rare-earth elements was set to 12 at %.
A rare-earth iron boron bonded magnet 14 using rare-earth elements Nd and Pr was employed and a total amount of the rare-earth elements was set to 12.5 at %.
A rare-earth iron boron bonded magnet 14 using rare-earth elements Nd and Pr was employed and a total amount of the rare-earth elements was set to 10 at %.
As described below, changes in magnetization characteristics due to intrinsic coercive forces depending on thermostatic temperatures were measured for Example 1, Example 2, and Comparative Example 1.
A magnetic powder having an intrinsic coercive force of 716 kA/m (9 kOe) was prepared using a rare-earth iron boron bonded magnet 14 in which rare-earth elements were Nd and Pr.
A magnetic powder having an intrinsic coercive force of 796 kA/m (10 kOe) was prepared using a rare-earth iron boron bonded magnet 14 in which rare-earth elements were Nd and Pr.
A magnetic powder having an intrinsic coercive force of 557 kA/m (7 kOe) was prepared using a rare-earth iron boron bonded magnet 14 in which rare-earth elements were Nd and Pr.
A magnetic powder having an intrinsic coercive force of 716 kA/m (9 kOe) was prepared using a rare-earth iron boron bonded magnet 14 in which a rare-earth element was Nd.
A magnetic powder having an intrinsic coercive force of 796 kA/m (10 kOe) was prepared using a rare-earth iron boron bonded magnet 14 in which a rare-earth element was Nd.
Comparative Example 5 was prepared by adding cobalt Co (hereinafter referred to merely Co) in amount of 1 at % to the bonded magnet 14 of Example 1.
Comparative Example 6 was prepared by adding Co in amount of 5 at % to the bonded magnet 14 of Example 1. Here, each of Comparative Example 5 and Comparative Example 6 had an intrinsic coercive force of 716 kA/m (9 kOe).
Furthermore, the present invention is not limited to the embodiment described above.
Although the example of magnetizing a ring-shaped magnet as a magnetization subject is described above, the present invention is applicable to magnetization from the inside or both the inside and outside as well as magnetization from the outside. Any of these magnetization methods allows an inner peripheral surface or both the inner and outer peripheral surfaces of a ring-shaped permanent magnet provided as a magnetization subject to generate a magnetic pole corresponding to a magnetized pole. According to the present invention, means for applying magnetization magnetic field may be disposed in two stages instead of disposing it in one stage in an axial direction. Regarding skew magnetization, for example, it can be attained by arranging magnetization permanent magnets inclined at a predetermined angle.
Furthermore, the shape and size of a bonded magnet, the type of magnet powder, the Curie point of the magnet, and the Curie point of a magnetization permanent magnet, and so on may be selected from those other than the embodiments. Furthermore, the present invention can be carried out with various modifications without departing from the gist thereof.
Number | Date | Country | Kind |
---|---|---|---|
2012-017886 | Jan 2012 | JP | national |