Method for manufacturing dental implant components

Information

  • Patent Grant
  • 11046006
  • Patent Number
    11,046,006
  • Date Filed
    Thursday, June 21, 2018
    6 years ago
  • Date Issued
    Tuesday, June 29, 2021
    3 years ago
Abstract
A method for making a rapid prototype of a patient's mouth to be used in the design and fabrication of a dental prosthesis. The method takes an impression of a mouth including a first installation site having a dental implant installed in the first installation site and a gingival healing abutment having at least one informational marker attached to the dental implant. A stone model is prepared based on the impression, including teeth models and model markers indicative of the at least one informational marker. The model is scanned. Scan data is generated from the scanning. The scan data is transferred to a CAD program. A three-dimensional model of the installation site is created in the CAD program. The at least one informational marker is determined to gather information for manufacturing the rapid prototype. Rapid prototype dimensional information is developed. The rapid prototype dimensional information is transferred to a rapid prototyping machine which fabricate a rapid prototype of the patient's dentition as well as a dental implant analog position.
Description
FIELD OF INVENTION

The present invention relates generally to dental implant systems. More particularly, the present invention relates to dental implant systems wherein an implant is implanted in an edentulous bone of the alveolar arches of the jaws.


BACKGROUND OF THE INVENTION

The dental restoration of a partially or wholly edentulous patient with artificial dentition is typically done in two stages. In the first stage, an incision is made through the gingiva to expose the underlying bone. An artificial tooth root, usually a dental implant, is placed in the jawbone for integration. The dental implant generally includes a threaded bore to receive a retaining screw holding mating components therein. During the first stage, the gum tissue overlying the implant is sutured and heals as the osseointegration process continues.


Once the osseointegration process is complete, the second stage is initiated. Here, the gum tissue is re-opened to expose the end of the dental implant. A healing component or healing abutment is fastened to the exposed end of the dental implant to allow the gum tissue to heal therearound. Preferably, the gum tissue heals such that the aperture that remains generally approximates the size and contour of the aperture that existed around the natural tooth that is being replaced. To accomplish this, the healing abutment attached to the exposed end of the dental implant has the same general contour as the gingival portion of the natural tooth being replaced.


During the typical second stage of dental restoration, the healing abutment is removed and an impression coping is fitted onto the exposed end of the implant. This allows an impression of the specific region of the patient's mouth to be taken so that an artificial tooth is accurately constructed. Thus, in typical dental implant systems, the healing component and the impression coping are two physically separate components. Preferably, the impression coping has the same gingival dimensions as the healing component so that there is no gap between the impression coping and the wall of the gum tissue defining the aperture. Otherwise, a less than accurate impression of the condition of the patient's mouth is made. The impression coping may be a “pick-up” type impression coping or a “transfer” type impression coping, both known in the art. After these processes, a dental laboratory creates a prosthesis to be permanently secured to the dental implant from the impression that was made.


In addition to the method that uses the impression material and mold to manually develop a prosthesis, systems exist that utilize scanning technology to assist in generating a prosthesis. A scanning device is used in one of at least three different approaches. First, a scanning device can scan the region in the patient's mouth where the prosthesis is to be placed without the need to use impression materials or to construct a mold. Second, the impression material that is removed from the healing abutment and surrounding area is scanned. Third, a dentist or technician can scan the stone model of the dental region that was formed from the impression material and mold to produce the permanent components.


Three basic scanning techniques exist, laser scanning, photographic imaging and mechanical sensing. Each scanning technique is used or modified for any of the above-listed approaches (a scan of the stone model, a scan of the impression material, or a scan in the mouth without using impression material) to create the prosthesis. After scanning, a laboratory can create and manufacture the permanent crown or bridge, usually using a computer aided design (“CAD”) package.


The utilization of a CAD program, as disclosed in U.S. Pat. No. 5,338,198, (Wu), whose disclosure is incorporated by reference herein, is one method of scanning a dental region to create a three dimensional model. Preferably, after the impression is made of the patient's mouth, the impression material or stone model is placed on a support table defining the X-Y plane. A scanning laser light probe is directed onto the model. The laser light probe emits a pulse of laser light that is reflected by the model. A detector receives light scattered from the impact of the beam with the impression to calculate a Z-axis measurement. The model and the beam are relatively translated within the X-Y plane to gather a plurality of contact points with known location in the X-Y coordinate plane. The locations of several contact points in the Z-plane are determined by detecting reflected light. Finally, correlating data of the X-Y coordinates and the Z-direction contact points creates a digital image. Once a pass is complete, the model may be tilted to raise one side of the mold relative to the opposite vertically away from the X-Y plane. Subsequent to the model's second scan, the model may be further rotated to allow fix a more accurate reading of the model. After all scans are complete, the data may be fed into a CAD system for manipulation of this electronic data by known means.


Photographic imaging can also used to scan impression material, a stone model or to scan directly in the mouth. For example, one system takes photographs at multiple angles in one exposure to scan a dental region, create a model and manufacture a prosthetic tooth. As disclosed in U.S. Pat. No. 5,851,115, (Carlsson), whose disclosure is incorporated by reference herein, this process is generally initiated with the process of taking a stereophotograph with a camera from approximately 50 to 150 mm away from the patient's mouth. The stereophotograph can involve a photograph of a patient's mouth already prepared with implantation devices. Correct spatial positioning of the dental implants is obtained by marking the implant in several locations. The resulting photograph presents multiple images of the same object. The images on the photographs are scanned with a reading device that digitizes the photographs to produce a digital image of the dental region. The data from the scanner is electronically transmitted to a graphical imaging program that creates a model that is displayed to the user. After identification of the shape, position and other details of the model, the ultimate step is the transmission of the data to a computer for manufacturing.


A third scanning measure uses mechanical sensing. A mechanical contour sensing device, as disclosed in U.S. Pat. No. 5,652,709 (Andersson), whose disclosure is incorporated by reference herein, is another method used to read a dental model and produce a prosthetic tooth. The impression model is secured to a table that may rotate about its longitudinal axis as well as translate along the same axis with variable speeds. A mechanical sensing unit is placed in contact with the model at a known angle and the sensing equipment is held firmly against the surface of the model by a spring. When the model is rotated and translated, the sensing equipment can measure the changes in the contour and create an electronic representation of the data. A computer then processes the electronic representation and the data from the scanning device to create a data array. The computer then compresses the data for storage and/or transmission to the milling equipment.


When the stone model of the patient's mouth is created for use in the scanning process, or in other prior techniques, a second stone model of the patient's mouth is also required to develop a final prosthesis for use in the patient. Unfortunately, accuracy limitations on the second stone model reduce the precision of the final prosthesis. A need exists for a method that eliminates the need to create this second stone model.


SUMMARY OF THE INVENTION

According to one process of the current invention, a rapid prototype of a patient's dentition and dental implant analog for use in creating a patient specific prosthetic is provided. The process takes an impression of a mouth including a first installation site that has a dental implant installed in the first installation site and a gingival healing abutment that has at least one informational marker attached to the dental implant. A stone model based on the impression is prepared. The stone model includes teeth models and model markers indicative of the at least one informational marker. The process scans scanning the model. Scan data are generated from the scan of the model. The scan data are transferred to a CAD program. The method creates a three-dimensional model of the installation site on the CAD program using the scan data. The process determines the at least one informational marker to gather information for manufacturing the rapid prototype of the patient's dentition. The process develops the rapid prototype dimensional information based on the three-dimensional image and the at least one informational marker. The method transfers the rapid prototype dimensional information to a rapid prototyping machine. The process fabricates the rapid prototype of the patient's dentition and dental implant analog receptacles on the rapid prototyping machine using the rapid prototype dimensional information.


According to another process of the current invention, a method of manufacturing a rapid prototype of a patient's dentition and dental implant analog for use in creating a patient specific prosthesis is provided. The process takes an impression of a mouth including a first installation site that has a dental implant installed in the first installation site and a gingival healing abutment having at least one informational marker attached to the dental implant. The process prepares a stone model based on the impression, the stone model includes teeth models and model markers indicative of the at least one informational marker. The method scans the model. The process generates scan data from the scan of the model. The scan data transfers to a CAD program. The process creates a three-dimensional model of the installation site on the CAD program using the scan data. The method determines the at least one informational marker to gather information for manufacturing the rapid prototype of the patient's dentition. The method develops the rapid prototype dimensional information based on the three-dimensional image and the at least one informational marker. The process obtains soft tissue element dimensional information based on the three-dimensional image and the at least one informational marker. The method generates soft tissue element mold dimensional information based on the soft tissue element dimensional information. The method provides the soft tissue element mold dimensional information to a rapid prototyping machine. The method produces a mold of the soft tissue element on the rapid prototyping machine. The process casts the soft tissue element in the mold of the soft tissue element. The method transfers the rapid prototype dimensional information to a rapid prototyping machine. The method fabricates the rapid prototype of the patient's dentition and dental implant analog receptacles on the rapid prototyping machine using the rapid prototype dimensional information. The method assembles the soft tissue element to the rapid prototype of the patient's dentition and dental implant analog.


According to a further process of the present invention, a method of manufacturing a custom dental prosthesis is provided. The process installs a dental implant into a first installation site in bone having overlying gingiva in a mouth. The method attaches an attachment member to the dental implant. The attachment member has at least one informational marker for identifying physical characteristics of the attachment member. The process takes an impression of the mouth including the first installation site. The method prepares a stone model based on the impression. The stone model includes teeth models and model markers indicative of the at least one informational marker. The method takes an impression of the mouth including the first installation site. The process prepares a stone model based on the impression. The stone model includes teeth models and model markers indicative of the at least one informational marker. The process scans the model. The method generates scan data from the scanning of the model. The process transfers the scan data to a graphical imaging software program. The method creates a three-dimensional image of the installation site. The method determines the model markers to gather information for manufacturing the custom-abutment. The process develops custom-abutment dimensional information based on the three-dimensional image and the information gathered from the at least one informational marker. The method transfers the custom-abutment dimensional information to a milling machine. The process fabricates the custom-abutment on the milling machine utilizing the custom-abutment dimensional information. The method determines the at least one informational marker to gather information for manufacturing a rapid prototype of the patient's mouth, including information regarding the dental implant. The process develops the rapid prototype dimensional information based on the three-dimensional image and the at least one informational marker. The method transfers the rapid prototype dimensional information to a rapid prototyping machine. The method fabricates the rapid prototype of the patient's mouth and dental implant analog receptacle on the rapid prototyping machine using the rapid prototype dimensional information. The process attaches the custom abutment to the dental implant analog on the rapid prototype of the patient's mouth and dental implant analog. The method produces a tooth-like prosthetic adapted to mate with the custom abutment.


According to yet another process of the present invention, method to create a dental laboratory model upon which a final prosthetic tooth can be created is provided. The method scans a model of a patient's mouth that has a replicated portion of a healing abutment. The method creates a CAT) model from data acquired by the scan. The method uses a rapid prototype technique to create the dental laboratory model from the CAD model. The dental laboratory model includes an implant analog at a location corresponding to the replicated portion of the healing abutment.


According to yet a further process of the present invention, a, method to create a dental laboratory model upon which a final prosthetic tooth can be created is provided. The method scans a patient's mouth including a portion of a healing abutment. The method creates a CAD model from data acquired by the scan. The method uses a rapid prototype technique to create the dental laboratory model from the CAD model. The dental laboratory model includes an implant analog at a location corresponding to the portion of the healing abutment.


According to still yet another process of the present invention, a method to create a final prosthesis for an implantation sit in a patient's mouth is provided. The method takes an impression, of the patient's mouth at the implantation site. The impression includes an impressed area corresponding to a healing abutment attached to an implant at the implantation site. The process creates a stone model from the impression. The method develops a computer model from the stone model. The method creates a custom dental abutment on the computer model. The method creates a rapid prototype model from the computer model. The method attaches the dental abutment to the rapid prototype model. The process forms tooth-like material around the abutment.


According to one embodiment of the present invention, a dental component comprises a rapid prototype model created from a CAD image of a physical model of a patient's mouth and includes an implant analog at a location substantially corresponding to a region in the patient's mouth adjacent to the dental implant.


According to another embodiment of the present invention, a dental component comprises a rapid prototype model created from a CAD image of a physical model of a patient's mouth and includes a soft tissue element at a region substantially corresponding to a region in the patient's mouth adjacent to a dental implant and further includes an implant analog at a location substantially corresponding to a region in the patient's mouth adjacent to the dental implant.


According to a further embodiment of the present invention, a dental component comprises a rapid prototype model created from a CAD image of a patient's mouth and includes an implant analog at a location substantially corresponding to a region in the patient's mouth adjacent to a dental implant.


According to yet another embodiment of the present invention, a dental component comprises a rapid prototype model created from a CAD image of a patient's mouth and includes a soft tissue element at a region substantially corresponding to a region in the patient's mouth adjacent to a dental implant and further includes an implant analog at a location substantially corresponding to a region in the patient's mouth adjacent to the dental implant.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1a is a top view of a healing abutment;



FIG. 1b is a longitudinal cross-sectional view of the healing abutment shown in FIG. 1a;



FIG. 1c is the healing abutment shown in FIG. 1b attached to an implant;



FIG. 2a is a top view of another embodiment of a healing abutment;



FIG. 2b is a longitudinal cross-sectional view of the healing abutment shown in FIG. 2a;



FIG. 3a is a top view of yet another embodiment of a healing abutment;



FIG. 3b is a longitudinal cross-sectional view of the healing abutment shown in FIG. 3a; and



FIG. 4a is a top view of a further embodiment of the healing abutment;



FIG. 4a is a top view of a further embodiment of the healing abutment;



FIG. 4b is a longitudinal cross-sectional view of the healing abutment shown in FIG. 4a;



FIG. 5a is a top view of another embodiment of a healing abutment;



FIG. 5b is a longitudinal cross-sectional view of the healing abutment shown in FIG. 5a;



FIG. 6a is a top view of another embodiment of a healing abutment;



FIG. 6h is a longitudinal cross-sectional view of the healing abutment shown in FIG. 6a;



FIG. 7 is an exploded view of another embodiment of the present application;



FIG. 8 is a side view of a method for stereophotographic imaging;



FIGS. 9a-9p are top views of a plurality of healing abutments having a binary-type system of information markers;



FIG. 9q is a top view of a healing abutment having a bar code information marker;



FIG. 10 is a perspective view of a coordinate system of one embodiment of the present invention;



FIG. 11 is a perspective view of a stone model of an impression of a mouth according to one embodiment of the present invention;



FIG. 12 is a perspective view of a 3-D CAD model of the stone model of FIG. 11;



FIG. 13 is a perspective view of an altered 3-D CAD model of FIG. 12 with the healing abutments removed from the CAD model;



FIG. 14 is a perspective view of an altered 3-D CAD model of FIG. 13 with implant analog receptacles added in the CAD model;



FIG. 15 is a perspective view of a rapid prototype model of the 3-D CAD model of FIG. 14 with implant analog receptacles;



FIG. 16 is a perspective view of a stone model of an impression of a mouth with a soft tissue insert according to a further embodiment of the present invention;



FIG. 17 is an exploded view of the stone model of FIG. 16;



FIG. 18 is a partial perspective view of a 3-D CAD model of a stone model of a mouth;



FIG. 19 is a partial perspective view of an altered 3-D CAD model of FIG. 18 with a soft tissue insert;



FIG. 20 is a perspective view of a first piece of a mold of the 3-D CAD soft tissue insert of FIG. 18;



FIG. 21 is a perspective view of a second piece of a mold of the 3-D CAD the soft tissue insert of FIG. 18;



FIG. 22 is a perspective view of a soft tissue insert produce from the molds of FIGS. 20 and 21;



FIG. 23 is a partial perspective view of a rapid prototype model of the 3-D CAD model of FIG. 19; and



FIG. 24 is a perspective view of an implant analog used in conjunction with the present invention.





While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof have been shown by way of example in the drawings and will herein be described in detail. It should be understood, however, that it is not intended to limit the invention to the particular forms disclosed but, on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.


DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

As shown in FIGS. 1a and 1b, the healing abutment 10 of one embodiment of the present invention has a main body 15 with a generally circular cross-sectional shape, a first tapered section 17, a boundary 19, a second tapered section 21, an end surface 23, a hex socket 25 and dimensions that are generally suitable for replicating the emergence profile of a natural tooth. The first tapered section 17 extends downwardly from the main body 15 of the abutment 10 having a diameter at a boundary 19 that is generally larger than the implant (not shown). The boundary 19 separates the first tapered section 17 from the second tapered section 21 that terminates in the end surface 23. The second tapered section 21 is at an angle with the central axis of the implant that is generally in the range from about 5 degrees to about 15 degrees, with 10 degrees being preferable. Alternatively, the second tapered section 21 may be omitted such that the first tapered section 17 tapers directly to the diameter of the end surface 23 of the implant. In a further embodiment, the first tapered section 17 may merge smoothly into the second tapered section 21, without the distinct boundary 19 separating the two tapered sections 17 and 21. The hexagonal orientation socket or hex 25 is for mating with a hexagonal boss on the implant. The end surface 23 has generally the same diameter as the seating surface of the implant.



FIG. 1b discloses the top view of the same healing abutment 10 shown in FIG. 1a. As shown in FIGS. 1a and 1b, the healing abutment 10 has positive information markers 20 protruding from a top surface 29 of the healing abutment 10. Each of the six positive information markers 20 is disposed such that it aligns with the six corners of the underlying hex 25. It is also contemplated in accordance with the present invention that the six information markers 20 may also correspond to the height of the healing abutment. For example, two information markers might correspond to a 2 mm tall healing abutment and four information markers might correspond to a healing abutment that is 4 mm tall. In these embodiments, the two or four information markers would still be at the corners of the underlying hex 25 so that the relative position of the hex is known.


A socket 30 on the exposed surface of a head portion 40 of an attaching bolt 50 is shaped to accept a wrench (not shown) for turning the attaching bolt 50 into the threaded bore of an implant 70, as shown in FIG. 1c. It is contemplated in accordance with the present invention that each of the healing abutments described herein and shown in the figures can be secured to an implant by means of an attaching bolt, as is known in the art. An O-ring 60 carried on the head portion 40 of the attaching bolt 50 fills au annular gap left between the head and the entrance section near the outermost (widest) opening in the entrance section.


A healing abutment 100 of FIG. 2a comprises many of the same features as the healing abutment 10 shown in FIG. 1a, Dashed lines 125 in FIG. 2b correspond to the underlying hex 125 of the healing abutment 100 in FIG. 2a. A top surface 129 includes negative information markers (recesses) 120 that are displayed in FIG. 2a as dimples extending below the top surface 129 of the healing abutment 100. The top surface 129 of the healing abutment 100 also possesses six notches 130 that are machined into the corners. The top surface 129 is generally flat and merges into a rounded shape at the periphery of the healing abutment 100.


The notches 130 are used, for example, to determine the identification of the underlying implant hex position 125 or the height of the healing abutment or the diameter of the healing abutment. This embodiment is not limited to comprising six notches in the top surface 129 of the healing abutment 100. It is also contemplated that one embodiment of the present invention may possess four notches or even two notches for indicative purposes. Furthermore, it is contemplated that the information marker and notch approach could be combined or modified to provide information regarding the underlying implant seating surface diameter and implant hex angulation.


In another embodiment of the present invention, a healing abutment 200 shown in FIGS. 3a and 3b displays four positive information markers 220 shown to, for example, indicate a 4 mm tall healing abutment 200. It is contemplated that the number of information markers 220 could decrease or increase depending on the height of the healing abutment 200 or another variable that the information markers have been designated to correspond. The positive information markers 220 also define a corresponding one of the six flat surfaces of an underlying hex 225. Furthermore, dashed lines 225 in FIG. 3b correspond directly to the underlying hex 225.


Two notches 230 have also been etched or machined onto a top surface 229 of the healing abutment of FIG. 3b. These notches may indicate the diameter of the implant's seating surface. Lines 240 are scribed on the top surface 229 of the healing abutment 200. The lines 240 are used to provide positioning or other information to the dentist or laboratory. Here, the lines 240 indicate the diameter of the healing abutment (e.g., 4 mm). In summary, the number of the positive information markers 220 indicates the height of the healing abutment 200. The position of the positive information markers 220 indicates the orientation of the hex 225 that is the orientation of the hexagonal boss on the implant. The notches 230 indicate the diameter of the seating surface of the implant. The lines 240 indicate the diameter of the healing abutment 200.


In yet another embodiment of the present invention, a top surface 329 of the healing abutment 300 of FIGS. 4a and 4b comprises an etched or machined hex 335. Corners 322 of the etched hex 335 correspond directly to the position of the corners of an underlying hex 325 shown in FIG. 4a. It is contemplated in accordance with one embodiment of the present invention that further information markers may be added to the healing abutment for the dentist or laboratory to ascertain different heights or diameters.


A top surface 429 of a healing abutment 400 shown in FIGS. 5a and 5b contains an etched or machined triangle 435. Dashed lines 425 in FIG. 5b indicate the location of an underlying hex 425. Corners 422 of the etched triangle 435 correspond to three of the six corners of the underlying hex 425. Furthermore, two negative information markers 420 are shown in FIG. 5b. As above, it is contemplated in accordance with the present invention that fewer than six information markers may exist to account for differing heights or diameters of the healing abutments.


Another embodiment of the present invention is shown in FIGS. 6a and 6b. The healing abutment 500 displayed in FIGS. 6a and 6b is a shorter version of the healing abutment 10 shown in FIGS. 1a and 1b. Two positive information markers 520 are shown in FIG. 6h to identify the height of the healing abutment 500. Dashed lines 525 of the healing abutment 500 correspond with the location and orientation of the underlying hex 525. Two notches 530 are also shown in a top surface 529 of this embodiment of the present invention to show the orientation of two of the underlying flats of the underlying hex 525. A numeral “4” at 537 is located on the top surface 529 of the healing abutment 500 to indicate, for example, the diameter of the healing abutment 500. As shown, the numeral “4” at 537 corresponds to a healing abutment 500 with a diameter of 4 mm. It is contemplated in accordance with the present invention that other numerals could be placed on the top surface 529 of the healing abutment 500 to indicate other healing abutment diameters. Further, it is also contemplated that the numeral could represent the height of the healing abutment or the diameter of the underlying implant.


During the second stage of the prosthetic implementation process and after a healing abutment with the information markers has been placed, an impression of the mouth is made with only the healing abutments as described herein and without the use of an impression coping. A model of the impression is poured with, for example, die stone. Since the information markers are disposed on the top and/or side of the healing abutment, the laboratory has all necessary information to define the gingival aperture, the implant size and the orientation of the underlying hex. This enables the laboratory to quickly prepare the permanent components. The system of the present invention also allows the maintenance of the soft-tissue surrounding the healing abutment where in prior systems the soft tissue would close once the healing abutment was removed. The system spares the patient from the pain of removing the healing abutment.


To create a permanent prosthesis, the dental region is scanned, as described above, from a stone model, from the impression material, or directly in the mouth using a laser scanning technique, a photographic scanning technique or a mechanical sensing technique. FIG. 8 shows stereophotographic imaging, one method used for scanning. Stereophotography with a camera 703 is performed directly on the mouth cavity 705 of the patient 707. A clinician can photograph implants and other components that have been placed into or adjacent the patient's jawbone 709.


The scanned information is then transferred into a graphical imaging program for analysis. The graphical imaging software program, due to the information markers on the surface of the healing abutment, can perform a wide variety of functions. The graphical imaging program can scan an opposing cast in order to develop an opposing occlusal scheme and relate this information back to the primary model. This feature is extremely important because many clinical patients have implants in both maxillary and mandibular locations.


The graphical imaging software program is capable of generating a three-dimensional image of the emergence profile contours used on the healing abutment. If the implant is not placed in the desired esthetic location, the software program relocates the position of the restoration emergence through the soft tissue. The graphical imaging software program is also able to accurately relate the gingival margin for all mold, model, implant and abutment dimensions. The software creates a transparent tooth outline for superimposition within the edentulous site. The occlusal outline of the “ghost” tooth should, if possible, be accurate and based on the scanned opposing occlusal dimensions. It is contemplated in accordance with the present invention that an occlusal outline is created by scanning a wax-up in order to maintain a proper plane of occlusion and healing abutment height.


The software program subtracts a given dimension from the mesial, distal, buccal, lingual, and occlusal areas of the superimposed tooth dimension. This allows for an even reduction of the healing abutment during fabrication to allow for proper thickness of the overlying materials (e.g., gold, porcelain, targis, etc.). The graphical imaging software program also incorporates angulation measurements into the custom abutment and subsequently calculates the dimensions of the prosthesis that are checked and modified, if necessary, by a laboratory technician. Each of the features is analyzed and determined from the different information markers that exist on the healing abutments of the present invention.


The final dimensional information determined by the graphical imaging computer program is transferred from the computer to a milling machine (e.g., a 5-axis milling machine) to fabricate the custom abutment. It is contemplated in accordance with the present invention that the custom abutment can be fashioned from gold or titanium or other similar metals or composites. A custom milled coping can then be fabricated. It is contemplated in accordance with the present invention that the custom milled coping can be formed from titanium, plastic, gold, ceramic, or other similar metals and composites.



FIG. 7 shows the exploded view of another embodiment of the present invention. A cap 602 is placed on a healing abutment 600 and later removed during the process of taking the impression of the healing implant and surrounding features of the patient's mouth. It is contemplated in accordance with the present invention that the cap 602 could be formed from plastic or metal or a composite material. As shown in FIG. 7, notches 604 are formed in the side(s) of the healing abutment 600. These notches correspond to notches 606 that have been preformed in the cap 602. When the cap 602 is placed onto the healing abutment 600, the cap only fits snugly and properly if the number of notches 606 in the cap 602 corresponds exactly to the number of notches 604 in the side wall(s) of the healing abutment. It is contemplated in accordance with the present invention that there could be many less or more notches than is depicted in FIG. 7. These notches correspond to information parameters such as healing abutment height, healing abutment and/or implant diameter and other parameters as listed above.


Specifically, after the healing abutment has been secured to the implant, the cap 602 is securely placed over the top of the healing Abutment 600. The impression material is then placed over the top of the cap 602. The impression is then either scanned in the patient's mouth or the impression material (with the cap 602) is then scanned and the process continues as described above.



FIGS. 9a-9p depict yet another embodiment of the present invention. Specifically, FIGS. 9a-9p show the top view of a plurality of healing abutments, each of which has four marking locations on the top surface of the healing abutment. For each healing abutment, a marker is either present or absent in each of the four marking locations, and the presence or absence can be interpreted either visually or by a scanning device. As explained below in detail, the markers in the marking locations permit identification of healing abutment characteristics, such as dimensions of the healing abutment.


In FIGS. 9a-9p, the four rows correspond to four different healing abutment heights (e.g., 3 mm, 4 mm, 6 min, and 8 mm). The four columns of the coding key correspond to four different diameters of the healing abutment seating surfaces (e.g., 3.4 mm, 4.1 mm, 5.0 mm, and 6.0 mm). Accordingly, sixteen unique healing abutments are present.


The top surface of each of the healing abutments has from zero to four information markers located in the four marking locations. As shown in FIGS. 9a-9p, the marking locations extend radially from a central region of the healing abutment to the outer region of the top surface of the healing abutments (i.e., at locations of 12 o'clock, 3 o'clock, 6 o'clock, and 9 o'clock).


As is well known, a binary-coded system exists as an array of digits, where the digits are either “1” or “0” that represent two states, respectively, ON and OFF. For each marking location, the presence of a marker (“ON”) is a 1 and the absence of a marker (“OFF”) is a 0. By grouping sets of 1's and 0's together, information about each healing abutment is known. In the illustrative embodiment, the determination of the sets of 1's and 0's derived from the information markers (e.g., via visual inspection, scanning in the mouth, scanning of the impression, or scanning of the model created by the impression) provide information on the height of the healing abutment and the diameter of the seating surface of the attached implant.


The information markers shown in FIGS. 9a-9p are in the form of grooves having rounded cross-sections. The present invention, however, provides that the cross-section of these grooves can be rectangular, triangular, or various other shapes. When an impression is created from the healing abutment, the grooved marking locations produce a protruding “mound”-like element in the impression. This impression is then scanned so that identifying features regarding the healing abutment can be obtained. Alternatively, a model of the patient's mouth is created from the impression such that the markings are again grooves in the model that substantially replicate the grooves in the healing abutments. Of course, the markers could also be protrusions instead of grooves. Further, if the unique characteristics of the healing abutment are to be identified through scanning in the mouth or simply visual scanning by the clinician, then markers not producing features in impression material, such as etched or laser marking, may also be used.


Turning now to the specifics of each healing abutment, FIG. 9a illustrates a top view of a healing abutment 801 that includes orientation pick-ups 802. These orientation pick-ups 802 are also present in each of the healing abutments shown in FIGS. 9b-9p. The most counterclockwise of the orientation pick-ups 802 (i.e., the horizontal pick-up at the lower region of FIGS. 9a-9p) is always parallel to one flat of the implant hex, as viewed from the top of the healing abutment. As shown, the orientation pick-ups 802 are a pair of bevels on the sides of the healing abutments in FIGS. 9a-9p. Alternatively, the orientation pick-ups 802 can be grooves or protruding ridges, as well.


The orientation pick-ups 802 serve a second function in that they dictate which of the four marking locations is the first marking location. The other three marking locations are then read in clockwise order, proceeding from the most counterclockwise pick-up 802 to the other three marking locations on the top surface of the healing abutment. In other words, as illustrated in. FIGS. 9a-9p, the information marker at 6 o'clock is the first digit in the binary code, the information marker at 9 o'clock is the second digit in the binary code, the information marker at 12 o'clock is the third digit in the binary code, and the information marker at 3 o'clock is the fourth digit in the binary code. In summary, the position of the orientation pick-ups 802 allows for the determination of the position of one of the hex flats of the healing abutment (and, likewise, one of the hex flats on the implant), and also the starting point to check for the presence or absence of information markers.


The results of a scan (computer or visual) of the four information markers on the healing abutment 801 produce no information markers at the four marking locations on the healing abutment 801 of FIG. 9a. Thus, the binary code for the healing abutment 801 is 0000, indicating that no grooved marker is present in any of the four predetermined positions. Since the coding key is preset (on a chart or in computer software), the binary code 0000 indicates that the healing abutment 801 is a resident of first row and first column of the matrix depicted by FIG. 9, having a height of 3 mm and a seating surface diameter of 3.4 mm. Thus, the three distinct pieces of information obtained from the top of the healing abutment allow the clinician or laboratory to know (i) the orientation of the hex of the implant, (ii) the height of the healing abutment (i.e., the location of the implant's seating surface below the healing abutment), and (iii) the seating surface diameter of the healing abutment (or the size of the implant's seating surface).


The healing abutment 806 in. FIG. 9b possesses a binary code of 0100 because only one information marker 807 is present in the second marking location. Thus, it is understood from the binary code that the healing abutment 806 is 3 mm in height and has a seating surface diameter of 4.1 mm. The two healing abutments 811, 816 in FIGS. 9c, 9d have binary codes of 1000 and 1100, respectively. Healing abutment 811 has an information marker 812 in the first marking location, while healing abutment 816 has information markers 817, 818 in the first two locations. Thus, the unique characteristics of these two healing abutments are known.


The healing abutments 821, 826, 831, 836 shown in FIGS. 9e-9h and having heights of 4 mm, but with varying seating surface diameters, would be interpreted as having binary codes 0010, 0110, 1010, and 1110, respectively. Healing abutment 821 has one information marker 822 present in the third marking location, thus resulting in a binary code of 0010, which is indicative of a healing abutment height of 4 mm and a seating surface diameter of 3.4 mm. Similar analyses on healing abutment 826 with information markers 827; 828, healing abutment 831 with information markers 832, 833, and healing abutment 836 with information markers 837, 838, 839 allow determinations of the unique characteristics of these healing abutments.


The healing abutments 841, 846, 851, 856 shown in FIGS. 9i-9l and having heights of 6 mm, but with varying seating surface diameters, would be interpreted as having binary codes 0001, 0101, 1001, and 1101, respectively. Healing abutment 841 has one information marker 842 present in the fourth marking location, thus resulting in a binary code of 0001, which is indicative of a healing abutment height of 6 mm and a seating surface diameter of 3.4 mm. Similar analyses on healing abutment 846 with information markers 847, 848, healing abutment 851 with information markers 852, 853, and healing abutment 856 with information markers 857, 858, 859 allow determinations of the unique characteristics of these healing abutments.


The healing abutments 861, 866, 871, 876 shown in FIGS. 9m-9p and having heights of 8 mm, but with varying seating surface diameters, would be interpreted as having binary codes 0011, 0111, 1011, and 1111, respectively. Healing abutment 861 has two information markers 862, 863, which is indicative of a healing abutment height of 8 mm and a seating surface diameter of 3.4 mm. Similar analyses on healing abutment 866 with information markers 867, 868, 869, healing abutment 871 with information markers 872, 873, 874, and healing abutment 876 with information markers 877, 878, 879, 880 allow determinations of the unique characteristics of these healing abutments.


While the matrix of the sixteen healing abutments in FIGS. 9a-9p show four implant seating surface diameters and four heights, the matrix could include other physical characteristics of the healing abutment. For example, the maximum diameter of the healing abutment could be information obtainable through the binary-coded system. The type of fitting on the healing abutment and, thus, the implant (i.e., internal hex or external hex) could be provided. Information unrelated to the healing abutment, but related to only the implant, could be used. For example, the manufacturer of the implant could be noted. Or, information regarding the type of screw that mates with the internally thread bore of the implant could be provided.


Further, while FIGS. 9a-9p demonstrate the ability of the four digit, binary-coded system to provide two physical characteristics of the healing abutment, it could provide three or more physical characteristics. For example, two seating surface sizes, four heights, and two maximum diameters would provide sixteen unique healing abutments. If more information were needed, a fifth marking location could be added to provide the opportunity for displaying thirty-two physical characteristics of the healing abutments and/or implant. And, while one marking location has been shown with marker, it is possible to have two or more markers in each marking location. For example, one circumferential groove and one radial groove within one location could represent two digits of a binary system. Alternatively, having two widths possible for each groove could provide additional indicia representative of certain information about the healing abutment.


While the invention has been described with round healing abutments, healing abutments anatomically shaped like teeth can take advantage of the information markers. Thus, the set of healing abutments could include components shaped like the various teeth, and the information markers could provide the information regarding which tooth shape is present on the healing abutment. For example, a set may include four types of molar-shaped healing abutments, four types of bicuspid-shaped healing abutments, four types of incisor-shaped healing abutments and four types of round abutments. The four information marker locations on each component in the set provide the information to determine which one of the sixteen healing abutments is being used.


It is contemplated that the present invention also covers a set of eight unique healing abutments (as opposed to the sixteen shown) requiring only three marking locations. The computer software and/or the visual chart in this situation would identify these eight unique healing abutments through binary codes possessing three digits. The potential binary codes corresponding to an ON or OFF determination at the three marking locations are 000, 100, 010, 001, 110, 101, 011, and 111. Similarly, if the set has only four unique healing abutments, only two marking locations would be required on the healing abutments to determine features regarding the healing abutment and the attached dental implant. The potential binary codes in a four healing abutment matrix are 00, 10, 01, and 11.


After the top surface of a healing abutment (or the impression of the top surface, or the model of the impression of the top surface) is analyzed, the orientation of the hex is known from the location of the orientation pick-ups 802 and, via the binary code, the abutment height and the seating surface of the healing abutment is known. Other information regarding the healing abutment and the attached implant can also be determined by adding other markers of the type previously shown.


In addition to the markers described, it is further possible to provide a bar-coded system for providing information about the particular component, as shown in FIG. 9q. The bar code 894 can be located on the top surface on the healing abutment 892 such that it can be scanned or read easily. Thus, the bar code 894 would provide the same type of information described above with respect to the information markers.


Referring to FIG. 10, when scanning techniques are used to learn of the information on the top of the healing abutment, the computer software is able to determine the position and orientation of the implant 900 relative to the adjacent teeth. The position of the implant 900 is defined in a Cartesian coordinate system having “X,” “Y,” and “Z” axes. The common point is at the intersection of the centerline of the implant and a plane 920 representing the seating surface 925 of the implant 900.


As noted above, the information markers assist in determining the height of the healing abutment above the implant. This height can be used to identify the zero point on the “Z” axis, which is in the plane 920 containing the seating surface 925 of the implant 900. The “Y” axis 910 is within the plane 920 representing the seating surface 925 with the positive “Y” direction as close to the direction of facial to buccal as possible. The “X” axis 915 is in the plane 920 and is perpendicular to an implant hex face. Thus, the width of the seating surface 925 in the plane 920 is known, as is the width of the healing abutment emerging through the gingiva. Thus, the emergence profile of the artificial tooth is known, as well.


Turning now to FIG. 11, a perspective view of a stone cast 1000 of a mouth of a patient is shown with two stone-cast models of healing abutments 1002, 1004, which have configurations on their upper surface that correspond to the healing abutments previously described. The stone cast 1000 is made from an impression of the mouth as previously described.


Once the stone cast 1000 is prepared it is scanned using a scanning technique previously described, the scanned data is transferred into a graphical imaging program, such as a Computer Aided Design (“CAD”) program so that a three-dimensional (“3-D”) CAD model 1100 of the stone cast 1000 is created, as shown in FIG. 12.


Using the CAD program, the 3-D CAD model 1100 is processed such that a first altered 3-D CAD model 1200 is created, as depicted in FIG. 13. The CAD program (or the operator of the CAD program) identifies the healing abutments (1002, 1004 from the stone cast 1000 of FIG. 11) from the cast 1000 so that the physical structure of the healing abutments may be removed from the first altered 3-D CAD model 1200. The first altered 3-D CAD model 11200 contains the implant seating surfaces 1202, 1204 corresponding to the dental implants to which the healing abutments (1002, 1004 from the stone cast 1000 of FIG. 11) are attached. The CAD program preferably contains the geometry of a plurality of possible implants, and models the upper surface of the implant underlying the healing abutments based on the markings contained on the healing abutments and/or information provided by the clinician.


The CAD program further modifies the first altered 3-D CAD model 1200 by removing the implant seating surfaces 1202, 1204 and replacing them in a second altered 3-D CAD model 1300 with implant analog receptacles 1302, 1304 as shown in FIG. 14. The CAD program contains the geometry of a plurality of possible implant analog receptacles corresponding to the plurality of implant analogs that may be used with the system. Each of the implant analog receptacles 1302, 1304 is adapted to receive an implant analog that is used in later steps to develop the tooth-like ceramic restoration on the custom abutment.


Once the second altered 3-D CAD model 1300 is created, the CAD program allows a rapid prototype 1400 (FIG. 15) corresponding to the second altered 3-D CAD model 1300 to be created using rapid prototype equipment. It is contemplated that many rapid prototyping techniques may be utilized with the present invention such as: stereolithography, laminated-object manufacturing, selective laser sintering, solid ground curing, or other known rapid prototyping processes. The second altered 3-D CAD model 1300 is used by the equipment controlling the rapid prototype equipment to create the rapid prototype 1400.


The rapid prototype 1400 is depicted in FIG. 15 and contains implant analogs 1402 (See FIG. 24), 1404 in respective implant analog receptacles 1302, 1304 of the second altered 3-D CAD model 1300. The implant analogs 1402, 1404 may be identical, or may vary depending on the implants placed in the patient. The implant analogs 1402, 1404 mimics the external geometry of at least a portion of an implant placed in a patient. The rapid prototype 1400 may then be sent to a dental lab to be utilized by the dental lab, along with the custom abutment as previously described, so that a permanent, or temporary, prosthesis to fit over the custom abutment may be produced. Utilizing the rapid prototype 1400 increases the accuracy of the prosthesis compared to using a duplicate stone cast to create the prosthesis. The rapid prototype 1400 contains implant analogs with highly accurate placement and orientation, as human error is removed from the placement of the implant analogs in a duplicate cast stone model. Additionally, the use of the rapid prototype 1400 does not require the creation of an implant-level impression, also referred to as a surgical index. Therefore, the healing abutments in the patient's mouth do not need to be removed to create such an impression and the healing process is enhanced.


It is further contemplated that the rapid prototype created from the second altered 3-D CAD model would additionally contain a rapid prototype of a custom patient-specific abutment. Such a rapid prototype would not contain an implant analog, but instead the dental lab could simply create a permanent, or temporary, prosthesis directly from the rapid prototype without having to assemble any components to the rapid prototype. This removes yet another step where human error may occur that could adversely affect the accuracy of the prosthesis.


Additionally, it is contemplated that a rapid prototype created from the second altered 3-D CAD model would contain a rapid prototype of a modified implant analog rather than an implant analog receptacle. The modified implant analog placed into the rapid prototype would have a blind hole to allow a self-tapping screw to be used to secure an abutment to the rapid prototype. The dental lab would then be able to a permanent, or temporary, prosthesis. The use of the self-tapping screw and the blind hole allow eliminates the need to create threads in the rapid prototype of the implant analog, thus simplifying the rapid prototype.


Turning now to FIG. 16, a stone cast 1500 is shown having implant analogs 1502, 1504 inserted into the stone cast 1500 having a soft tissue element 1506. The soft tissue element 1506 simulates tissue in a patient's mouth. Soft tissue elements are explained in greater detail in U.S. Pat. Nos. RE 36,126 and RE 36,689, both of which are herein incorporated by reference in their entirety. FIG. 17 shows an exploded view of the stone cast 1500 with the soft tissue element 1506 removed.


In order to create a stone model of a patient's mouth having both a soft tissue element and a more traditional dental stone material section, more than one material must be used when forming the model of the patient's mouth. Thus, the portion of the stone model around the dental implant will contain soft tissue model material, such as silicone, and the rest of the stone model contains traditional stone die material. The soft tissue model is typically removable from the rest of the stone model. FIG. 18 depicts a 3-D CAD model 1700 of a part of the region of a stone model containing implant analog receptacles 1702, 1704 that does not contain a soft tissue element. The CAD program is used to modify the 3-D CAD model 1700 to create a modified 3-D CAD model with a soft tissue element 1800 containing implant analog receptacles 1802, 1804 as well as a soft tissue element 1806, as depicted in FIG. 19. The modified 3-D CAD model with a soft tissue element 1800 may be utilized to create a cast 1816 (FIG. 22) of the soft tissue element 1806 as well as the underling stone material 1822.


The first step in creating the cast 1816 of the soft tissue element 1806 is to utilize the CAD program to generate a 3-D CAD model of a mold of the soft tissue element. As previously described, the CAD program Obtains the location of the seating surfaces of the implants, and further modifies the CAD model to locate implant analog receptacles on the CAD model. Having the proper position of the implant analogs allows the CAD program to determine the position of the soft tissue element to be used with the particular 3-D CAD model. This allows the CAD program to calculate the locations, dimensions, and volume of the soft tissue element 1806. It is contemplated that the mold used to create the cast 1816 of the soft tissue element would be a two-piece mold. The first mold piece 1808, depicted in FIG. 20, controls the shape of the top outer surface of the cast of the soft tissue element 1816. The second mold piece 1810, shown in FIG. 21 controls the shape of the bottom outer surface of the cast of the soft tissue element 1816. The second mold piece 1810 contains through-hole elements 1812, 1814 to allow the cast of the soft tissue element 1816 to allow access to the implant analogs. The first mold piece 1808 and the second mold piece 1810 may be produced using rapid prototype equipment previously described. The completed first mold piece 1808 and second mold piece 1810 are assembled and the soft tissue material is poured into the assembled mold and the cast of the soft tissue element 1816 is created. FIG. 22 depicts the cast of the soft tissue element 1816. The soft tissue element 1816 has through-hole elements 1818 and 1820 so that the implant analogs in an underlying rapid prototype 1818 of a patient's mouth may be accessed. The soft tissue element 1816 is attached to the modified rapid prototype 1822 of the patient's mouth. The rapid prototype 1822 is created by a similar method to that previously described in relation to FIG. 11-15, except an area to attach the soft tissue element 1816 is created by removing a portion of the stone material from the 3-D CAD model 1700 to accommodate the soft tissue element 1816.


According to an alternate embodiment of the present invention, a soft tissue element may be made directly on a rapid prototype machine. In such an embodiment the previously described molds would not be used, rather a compliant rapid prototype material would be used to form the soft tissue element directly on the rapid prototype machine.


According to an alternate embodiment of the present invention, Computed Tomography (“CT”) technology is used in place of the previously described scanning to generate a 3-D model of a patient's mouth. Using the CT technology allows the use of any abutment, removing the requirement that the abutment contain markings like those found in FIGS. 1-6, and 9. To use the CT method, an implant is first placed within bone and allowed to osseointegrate. A healing abutment is then placed on the implant. A CT scan of the patient's mouth is then performed, generating CT scan data. The CT scan data is next used in combination with medical imaging and CAD programs to generate a 3-D CAD model of a patient's mouth. Once the 3-D CAD model of the patient's mouth is created, a rapid prototype of the patient's mouth may be generated in one of the methods previously described. Additionally, the custom abutment may be manufactured using the data obtained from the CT scan. The CT method eliminates the need to take an impression of the patient's mouth and to make a stone model of the patient's mouth for creating the final, or temporary, prosthesis. The elimination of the taking the impression and making the stone model improves the accuracy of the rapid prototype of the patient's mouth by eliminating the chance to introduce error into the rapid prototype when the impression is taken or when the stone model is created.


According to another alternate embodiment of the present invention, an intra-oral scanning technique is used. Instead of taking a scan of a stone model of the patient's mouth, a scan is taken within a patient's mouth that shows the patient's teeth and the healing abutment with a marking, such as those described in connection with FIGS. 1-6, and 9. Once the intra-oral scan is complete, the data generated is fed into the CAD program to create a 3-D CAD model of the patient's mouth. The rapid prototype methods described in connection with FIGS. 11-23 may then be performed to create a rapid prototype model of the patient's mouth so that a permanent, or temporary, prosthesis may be formed. The use of intra-oral scanning eliminates the need to take an impression of the patient's mouth and make a stone model of the patient's mouth. Eliminating these steps reduces the chance to introduce error into the rapid prototype when the impression is taken or when the stone model is created.


In addition to CT scanning, it is possible that an ultrasonic scan may be used to obtain ultrasonic scan data to be used to generate a 3-D CAD model of a patient's mouth. Using an ultrasonic technique to generate a model of a patient's mouth is disclosed in U.S. Pat. Nos. 6,050,821 and 6,638,219, each of which is incorporated by reference herein in its entirety.


In addition to milling a custom abutment from a metallic material, utilizing a process of the present invention, it is further contemplated that a polymeric custom abutment, such as an acrylic custom abutment, may be made from a 3-D CAD model. The acrylic custom abutment may be used as a temporary prosthetic abutment. It is additionally contemplated that additional components, such as a custom healing abutment may be manufactured utilizing a method of the present invention. A temporary polymeric custom abutment may be useful in allowing the temporary polymeric abutment to be used in a patient while a metallic custom abutment is manufactured, or to allow gingival healing or gingival sculpting.


While particular embodiments and applications of the present invention have been illustrated and described, it is to be understood that the invention is not limited to the precise construction and compositions disclosed herein and that various modifications, changes, and variations may be apparent from the foregoing descriptions without departing from the spirit and scope of the invention as defined in the appended claims.

Claims
  • 1. A method of making a physical model of at least a portion of a patient's mouth having a dental implant installed therein, the physical model to be used in developing a prosthetic tooth to be coupled to the dental implant, comprising: receiving scan data including information about a location of the dental implant installed in the patient's mouth;developing a virtual three-dimensional model of at least a portion of the patient's mouth from the scan data;developing a first data set to be used in fabricating the physical model of at least the portion of the patient's mouth;developing a second data set to be used in developing a custom dental abutment; andfabricating, by use of the first data set and the second data set, the physical model of at least the portion of the patient's mouth and the custom dental abutment positioned at a location in the physical model that corresponds to the location of the dental implant installed in the patient's mouth, the custom dental abutment integral with the physical model.
  • 2. The method of claim 1, wherein the fabricating the physical model and the custom dental abutment include manufacturing the physical model and the custom dental abutment via rapid prototyping.
  • 3. The method of claim 1, wherein the custom dental abutment is integral with the physical model such that no assembly between the custom dental abutment and the physical model is required.
  • 4. The method of claim 1, further including: prior to the receiving scan data, scanning at least the portion of the patient's mouth having the dental implant installed therein.
  • 5. The method of claim 4, further including: prior to the scanning the at least the portion of the patient's mouth, installing the dental implant in the mouth of the patient.
  • 6. The method of claim 5, further including: prior to the scanning the at least the portion of the patient's mouth, attaching an attachment member to the installed dental implant, the attachment member including features for identifying the location of the installed dental implant during the scanning.
  • 7. The method of claim 1, wherein the fabricating the physical model includes adding a soft tissue element surrounding the custom dental abutment.
  • 8. A method of making a physical model of at least a portion of a patient's mouth having a dental implant installed therein, the physical model to be used in developing a prosthetic tooth to be coupled to the dental implant, comprising: receiving scan data including information about a location of the dental implant installed in the patient's mouth;developing a virtual three-dimensional model of at least a portion of the patient's mouth from the scan data;developing a first data set to be used in fabricating the physical model of at least the portion of the patient's mouth;developing a second data set to be used in developing a custom dental abutment; andfabricating, by use of the first data set, the physical model of at least the portion of the patient's mouth, the physical model having a blind hole that is positioned at a location in the physical model that corresponds to the location of the dental implant installed in the patient's mouth.
  • 9. The method of claim 8, further including: by use of the second data set, manufacturing the custom dental abutment, the custom dental abutment to be attached to the blind hole in the physical model so as to allow the fabrication of a tooth-like restoration on the custom dental abutment, the prosthetic tooth comprising the tooth-like restoration and the custom dental abutment.
  • 10. The method of claim 9, wherein the custom dental abutment is configured to be attached to the blind hole via a screw.
  • 11. The method of claim 8, wherein the fabricating the physical model includes adding a soft tissue element surrounding the blind bore.
  • 12. A method of making a physical model of at least a portion of a patient's mouth having a dental implant installed therein, the physical model to be used in developing a prosthetic tooth to be coupled to the dental implant, comprising: receiving scan data including information about a location of the dental implant installed in the patient's mouth;developing a virtual three-dimensional model of at least a portion of the patient's mouth from the scan data, the virtual three-dimensional model for creating a first data set to be used in fabricating the physical model of the at least a portion of the patient's mouth;fabricating, by use of the first data set, the physical model, the physical model having an implant analog structure that is positioned at a location in the physical model that corresponds to the location of the dental implant installed in the patient's mouth, the implant analog structure having features corresponding to the installed dental implant.
  • 13. The method of claim 12, wherein the scan data is derived from a scan of at least the portion of the patient's mouth.
  • 14. The method of claim 12, wherein the implant analog structure is an implant analog attached to the physical model.
  • 15. The method of claim 12, wherein the implant analog structure is made of a same material as the physical model.
  • 16. The method of claim 12, wherein the physical model includes a receptacle leading to the implant analog structure.
  • 17. The method of claim 16, wherein the receptacle is partially defined by a compliant soft tissue element.
  • 18. The method of claim 12, wherein the implant analog structure is an implant analog receptacle that corresponds to an external geometry of the dental implant installed in the patient's mouth.
US Referenced Citations (519)
Number Name Date Kind
3906634 Aspel Sep 1975 A
3919772 Lenczycki Nov 1975 A
3958471 Muller May 1976 A
4011602 Rybicki et al. Mar 1977 A
4056585 Waltke Nov 1977 A
4086701 Kawahara et al. May 1978 A
4177562 Miller et al. Dec 1979 A
4199102 Paul Apr 1980 A
4294544 Altschuler et al. Oct 1981 A
4306862 Knox Dec 1981 A
4325373 Slivenko et al. Apr 1982 A
4341312 Scholer Jul 1982 A
4364381 Sher Dec 1982 A
4439152 Small Mar 1984 A
4543953 Slocum et al. Oct 1985 A
4547157 Driskell Oct 1985 A
4571180 Kulick Feb 1986 A
4611288 Duret et al. Sep 1986 A
4624673 Meyer Nov 1986 A
4663720 Duret et al. May 1987 A
4713004 Linkow et al. Dec 1987 A
4756689 Lundgren et al. Jul 1988 A
4758161 Niznick Jul 1988 A
4767331 Hoe Aug 1988 A
4772204 Soderberg Sep 1988 A
4821200 Oberg Apr 1989 A
4842518 Linkow et al. Jun 1989 A
4850870 Lazzara et al. Jul 1989 A
4850873 Lazzara et al. Jul 1989 A
4854872 Detsch Aug 1989 A
4856994 Lazzara et al. Aug 1989 A
4872839 Branjnovic Oct 1989 A
4906191 Soderberg Mar 1990 A
4906420 Brajnovic et al. Mar 1990 A
4931016 Sillard Jun 1990 A
4935635 O'harra Jun 1990 A
4961674 Wang et al. Oct 1990 A
4964770 Steinbichler et al. Oct 1990 A
4986753 Sellers Jan 1991 A
4988297 Lazzara et al. Jan 1991 A
4988298 Lazzara Jan 1991 A
4998881 Lauks Mar 1991 A
5000685 Brajnovic Mar 1991 A
5006069 Lazzara et al. Apr 1991 A
5015183 Fenick May 1991 A
5015186 Detsch May 1991 A
5030096 Hurson et al. Jul 1991 A
5035619 Daftary Jul 1991 A
5040982 Stefan-Dogar Aug 1991 A
5040983 Binon Aug 1991 A
5064375 Jorneus Nov 1991 A
5071351 Green, Jr. et al. Dec 1991 A
5073111 Daftary Dec 1991 A
5087200 Branjovic et al. Feb 1992 A
5100323 Friedman et al. Mar 1992 A
5104318 Piche Apr 1992 A
5106300 Voitik Apr 1992 A
5122059 Durr et al. Jun 1992 A
5125839 Ingber et al. Jun 1992 A
5125841 Carlsson et al. Jun 1992 A
5133660 Fenick Jul 1992 A
5135395 Marlin Aug 1992 A
5145371 Jorneus Sep 1992 A
5145372 Daftary et al. Sep 1992 A
5176516 Koizumi Jan 1993 A
5188800 Green et al. Feb 1993 A
5195892 Gersberg Mar 1993 A
5205745 Kamiya et al. Apr 1993 A
5209659 Friedman et al. May 1993 A
5209666 Balfour et al. May 1993 A
5213502 Daftary May 1993 A
5237998 Duret et al. Aug 1993 A
5246370 Coatoam Sep 1993 A
5257184 Mushabac Oct 1993 A
5281140 Niznick Jan 1994 A
5286195 Clostermann Feb 1994 A
5286196 Brajnovic et al. Feb 1994 A
5292252 Nickerson et al. Mar 1994 A
5297963 Dafatry Mar 1994 A
5302125 Kownacki et al. Apr 1994 A
5312254 Rosenlicht May 1994 A
5312409 McLaughlin et al. May 1994 A
5316476 Krauser May 1994 A
5320529 Pompa Jun 1994 A
5328371 Hund et al. Jul 1994 A
5333898 Stutz Aug 1994 A
5334024 Niznick Aug 1994 A
5336090 Wilson et al. Aug 1994 A
5338196 Beaty et al. Aug 1994 A
5338198 Wu et al. Aug 1994 A
5343391 Mushabac Aug 1994 A
5344457 Pilliar et al. Sep 1994 A
5350297 Cohen Sep 1994 A
5359511 Schroeder et al. Oct 1994 A
5362234 Salazar et al. Nov 1994 A
5362235 Daftary Nov 1994 A
5368483 Sutter Nov 1994 A
5370692 Fink et al. Dec 1994 A
5372502 Massen et al. Dec 1994 A
5386292 Massen et al. Jan 1995 A
5413481 Goppel et al. May 1995 A
5417569 Perisse May 1995 A
5417570 Zuest et al. May 1995 A
5419702 Beaty et al. May 1995 A
5431567 Daftary Jul 1995 A
5437551 Chalifoux Aug 1995 A
5440393 Wenz Aug 1995 A
5452219 Dehoff et al. Sep 1995 A
5458488 Chalifoux Oct 1995 A
5476382 Daftary Dec 1995 A
5476383 Beaty et al. Dec 1995 A
5492471 Singer Feb 1996 A
5516288 Sichler et al. May 1996 A
5527182 Willoughby Jun 1996 A
5533898 Mena Jul 1996 A
5538426 Harding et al. Jul 1996 A
5547377 Daftary Aug 1996 A
5556278 Meitner Sep 1996 A
5561675 Bayon et al. Oct 1996 A
5564921 Marlin Oct 1996 A
5564924 Kwan Oct 1996 A
5569578 Mushabac Oct 1996 A
5575656 Hajjar Nov 1996 A
5580244 White Dec 1996 A
5580246 Fried et al. Dec 1996 A
5595703 Swaelens et al. Jan 1997 A
5613832 Su Mar 1997 A
5613852 Bavitz Mar 1997 A
5617994 Fiedrich et al. Apr 1997 A
5630717 Zuest et al. May 1997 A
5636986 Pezeshkian Jun 1997 A
5651675 Singer Jul 1997 A
5652709 Andersson et al. Jul 1997 A
5658147 Phimmasone Aug 1997 A
5662476 Ingber et al. Sep 1997 A
5674069 Osorio Oct 1997 A
5674071 Beaty et al. Oct 1997 A
5674073 Ingber et al. Oct 1997 A
5681167 Lazarof Oct 1997 A
5685715 Beaty et al. Nov 1997 A
5688283 Knapp Nov 1997 A
5704936 Mazel Jan 1998 A
5718579 Kennedy Feb 1998 A
5725376 Poirier Mar 1998 A
5733124 Kwan Mar 1998 A
5741215 D'urso Apr 1998 A
5743916 Greenberg et al. Apr 1998 A
5759036 Hinds Jun 1998 A
5762125 Mastrorio Jun 1998 A
5762500 Lazarof Jun 1998 A
5768134 Swaelens et al. Jun 1998 A
5769636 Di Sario Jun 1998 A
5791902 Lauks Aug 1998 A
5800168 Cascione et al. Sep 1998 A
5813858 Singer Sep 1998 A
5823778 Schmitt et al. Oct 1998 A
5842859 Palacci Dec 1998 A
5846079 Knode Dec 1998 A
5851115 Carlsson et al. Dec 1998 A
5857853 Van Nifterick et al. Jan 1999 A
5871358 Ingber et al. Feb 1999 A
5873722 Lazzara et al. Feb 1999 A
RE36126 Beaty et al. Mar 1999 E
5876204 Day et al. Mar 1999 A
5885078 Cagna et al. Mar 1999 A
5888034 Greenberg Mar 1999 A
5904483 Wade May 1999 A
5915962 Rosenlicht Jun 1999 A
5927982 Kruger Jul 1999 A
5938443 Lazzara et al. Aug 1999 A
5954769 Rosenlicht Sep 1999 A
5964591 Beaty et al. Oct 1999 A
5967777 Klein et al. Oct 1999 A
5984681 Huang Nov 1999 A
5989025 Conley Nov 1999 A
5989029 Osorio et al. Nov 1999 A
5989258 Hattori Nov 1999 A
5992229 Pyotsia et al. Nov 1999 A
5997681 Kinzie Dec 1999 A
6000939 Ray et al. Dec 1999 A
6008905 Breton et al. Dec 1999 A
6050821 Klaassen et al. Apr 2000 A
RE36689 Beaty et al. May 2000 E
6068479 Kwan May 2000 A
6099311 Wagner et al. Aug 2000 A
6099313 Dorken et al. Aug 2000 A
6099314 Kopelman et al. Aug 2000 A
6120293 Lazzara et al. Sep 2000 A
6129548 Lazzara et al. Oct 2000 A
6135773 Lazzara Oct 2000 A
6142782 Lazarof Nov 2000 A
6174168 Dehoff et al. Jan 2001 B1
6175413 Lucas Jan 2001 B1
6190169 Bluemli et al. Feb 2001 B1
6197410 Vallittu et al. Mar 2001 B1
6200125 Akutagawa Mar 2001 B1
6206693 Hultgren Mar 2001 B1
6209794 Webster et al. Apr 2001 B1
6210162 Chishti et al. Apr 2001 B1
6217334 Hultgren Apr 2001 B1
6227859 Sutter May 2001 B1
6283753 Willoughby Sep 2001 B1
6287119 Van Nifterick et al. Sep 2001 B1
6296483 Champleboux Oct 2001 B1
6305939 Dawood Oct 2001 B1
6319000 Branemark Nov 2001 B1
6322728 Brodkin et al. Nov 2001 B1
6382975 Poirier May 2002 B1
6402707 Ernst Jun 2002 B1
6431867 Gittelson et al. Aug 2002 B1
6488503 Lichkus et al. Dec 2002 B1
6497574 Miller Dec 2002 B1
6540784 Barlow et al. Apr 2003 B2
6558162 Porter et al. May 2003 B1
6568936 Macdougald et al. May 2003 B2
6575751 Lehmann et al. Jun 2003 B1
6594539 Geng Jul 2003 B1
6610079 Li et al. Aug 2003 B1
6619958 Beaty et al. Sep 2003 B2
6629840 Chishti et al. Oct 2003 B2
6634883 Ranalli Oct 2003 B2
6638219 Asch et al. Oct 2003 B1
6648640 Rubbert et al. Nov 2003 B2
6671539 Gateno et al. Dec 2003 B2
6672870 Knapp Jan 2004 B2
6688887 Morgan Feb 2004 B2
6691764 Embert et al. Feb 2004 B2
6743491 Cirincione et al. Jun 2004 B2
6755652 Nanni Jun 2004 B2
6772026 Bradbury et al. Aug 2004 B2
6776614 Wiechmann et al. Aug 2004 B2
6783359 Kapit Aug 2004 B2
6790040 Amber et al. Sep 2004 B2
6793491 Klein et al. Sep 2004 B2
6808659 Schulman et al. Oct 2004 B2
6814575 Poirier Nov 2004 B2
6821462 Schulman et al. Nov 2004 B2
6829498 Kipke et al. Dec 2004 B2
D503804 Phleps et al. Apr 2005 S
6882894 Durbin et al. Apr 2005 B2
6885464 Pfeiffer et al. Apr 2005 B1
6902401 Jornéus et al. Jun 2005 B2
6913463 Blacklock Jul 2005 B2
6926442 Stöckl Aug 2005 B2
6926525 Rønvig et al. Aug 2005 B1
6939489 Moszner et al. Sep 2005 B2
6942699 Stone et al. Sep 2005 B2
6953383 Rothenberger Oct 2005 B2
6957118 Kopelman et al. Oct 2005 B2
6966772 Malin et al. Nov 2005 B2
6970760 Wolf et al. Nov 2005 B2
6971877 Harter Dec 2005 B2
6994549 Brodkin et al. Feb 2006 B2
7010150 Pfeiffer et al. Mar 2006 B1
7010153 Zimmermann Mar 2006 B2
7012988 Adler et al. Mar 2006 B2
7018207 Prestipino Mar 2006 B2
7021934 Aravena Apr 2006 B2
7029275 Rubbert et al. Apr 2006 B2
7044735 Malin May 2006 B2
7056115 Phan et al. Jun 2006 B2
7056472 Behringer Jun 2006 B1
7059856 Marotta Jun 2006 B2
7066736 Kumar et al. Jun 2006 B2
7084868 Farag et al. Aug 2006 B2
7086860 Schuman et al. Aug 2006 B2
7097451 Tang Aug 2006 B2
7104795 Dadi Sep 2006 B2
7110844 Kopelman et al. Sep 2006 B2
7112065 Kopelman et al. Sep 2006 B2
7118375 Durbin et al. Oct 2006 B2
D532991 Gozzi et al. Dec 2006 S
7153132 Tedesco Dec 2006 B2
7153135 Thomas Dec 2006 B1
7163443 Basler et al. Jan 2007 B2
7175434 Brajnovic Feb 2007 B2
7175435 Andersson et al. Feb 2007 B2
7178731 Basler Feb 2007 B2
7214062 Morgan May 2007 B2
7220124 Taub et al. May 2007 B2
7228191 Hofmeister et al. Jun 2007 B2
7236842 Kopelman et al. Jun 2007 B2
7281927 Marotta Oct 2007 B2
7286954 Kopelman et al. Oct 2007 B2
7303420 Huch et al. Dec 2007 B2
7319529 Babayoff Jan 2008 B2
7322746 Beckhaus et al. Jan 2008 B2
7322824 Schmitt Jan 2008 B2
7324680 Zimmermann Jan 2008 B2
7329122 Scott Feb 2008 B1
7333874 Taub et al. Feb 2008 B2
7335876 Eiff et al. Feb 2008 B2
D565184 Royzen Mar 2008 S
7367801 Saliger May 2008 B2
7379584 Rubbert et al. May 2008 B2
D571471 Stöckl Jun 2008 S
7381191 Fallah Jun 2008 B2
7383094 Kopelman et al. Jun 2008 B2
D575747 Abramovich et al. Aug 2008 S
7421608 Schron Sep 2008 B2
7425131 Amber et al. Sep 2008 B2
7429175 Gittelson Sep 2008 B2
7435088 Brajnovic Oct 2008 B2
7442040 Kuo et al. Oct 2008 B2
7476100 Kuo Jan 2009 B2
7481647 Sambu et al. Jan 2009 B2
7488174 Kopelman et al. Feb 2009 B2
7497619 Stoeckl Mar 2009 B2
7497983 Khan et al. Mar 2009 B2
7520747 Stonisch Apr 2009 B2
7522764 Schwotzer Apr 2009 B2
7534266 Kluger May 2009 B2
7536234 Kopelman et al. May 2009 B2
7545372 Kopelman et al. Jun 2009 B2
7551760 Scharlack et al. Jun 2009 B2
7555403 Kopelman et al. Jun 2009 B2
7556496 Cinader, Jr. et al. Jul 2009 B2
7559692 Beckhaus et al. Jul 2009 B2
7563397 Schulman et al. Jul 2009 B2
D597769 Richter Aug 2009 S
7572058 Pruss et al. Aug 2009 B2
7572125 Brajnovic Aug 2009 B2
7574025 Feldman Aug 2009 B2
7578673 Wen et al. Aug 2009 B2
7580502 Dalpiaz et al. Aug 2009 B2
7581951 Lehmann et al. Sep 2009 B2
7582855 Pfeiffer Sep 2009 B2
7600999 Knopp Oct 2009 B2
7610910 Ahmed Nov 2009 B2
7628537 Schulze-ganzlin Dec 2009 B2
7632097 De Clerck Dec 2009 B2
7653455 Cinader, Jr. Jan 2010 B2
7654823 Dadi Feb 2010 B2
7655586 Brodkin et al. Feb 2010 B1
7658610 Knopp Feb 2010 B2
7661956 Powell et al. Feb 2010 B2
7665989 Brajnovic et al. Feb 2010 B2
7679723 Schwotzer Mar 2010 B2
7687754 Eiff et al. Mar 2010 B2
7689308 Holzner et al. Mar 2010 B2
D614210 Basler et al. Apr 2010 S
7698014 Dunne et al. Apr 2010 B2
7774084 Cinader, Jr. Aug 2010 B2
7780907 Schmidt et al. Aug 2010 B2
7785007 Stoeckl Aug 2010 B2
7787132 Körner et al. Aug 2010 B2
7796811 Orth et al. Sep 2010 B2
7798708 Erhardt et al. Sep 2010 B2
7801632 Orth et al. Sep 2010 B2
7815371 Schulze-ganzlin Oct 2010 B2
7824181 Sers Nov 2010 B2
D629908 Jerger et al. Dec 2010 S
7855354 Eiff et al. Dec 2010 B2
7865261 Pfeiffer Jan 2011 B2
7876877 Stockl Jan 2011 B2
7901209 Saliger et al. Mar 2011 B2
7982731 Orth et al. Jul 2011 B2
7985119 Basler et al. Jul 2011 B2
7986415 Thiel et al. Jul 2011 B2
7988449 Amber et al. Aug 2011 B2
8011925 Powell et al. Sep 2011 B2
8011927 Berckmans, III Sep 2011 B2
8026943 Weber et al. Sep 2011 B2
8038440 Swaelens et al. Oct 2011 B2
8047895 Basler Nov 2011 B2
8057912 Basler et al. Nov 2011 B2
8062034 Hanisch et al. Nov 2011 B2
8083522 Karkar et al. Dec 2011 B2
8181224 Powell et al. May 2012 B2
8257083 Berckmans, III Sep 2012 B2
8509932 Kopelman Aug 2013 B2
8612037 Powell et al. Dec 2013 B2
8855800 Powell et al. Oct 2014 B2
9108361 Powell et al. Aug 2015 B2
10022916 Powell et al. Jul 2018 B2
20010008751 Chishti et al. Jul 2001 A1
20010034010 Macdougald et al. Oct 2001 A1
20020010568 Rubbert et al. Jan 2002 A1
20020016639 Smith et al. Feb 2002 A1
20020028418 Farag et al. Mar 2002 A1
20020039717 Amber et al. Apr 2002 A1
20020039718 Kwan Apr 2002 A1
20020125592 Schulman Sep 2002 A1
20020160337 Klein et al. Oct 2002 A1
20020167100 Moszner et al. Nov 2002 A1
20030130605 Besek Jul 2003 A1
20030222366 Stangel et al. Dec 2003 A1
20040029074 Brajnovic Feb 2004 A1
20040048227 Brajnovic Mar 2004 A1
20040166463 Kuo et al. Aug 2004 A1
20040180308 Ebi et al. Sep 2004 A1
20040193326 Phillips et al. Sep 2004 A1
20040219477 Harter Nov 2004 A1
20040219479 Malin Nov 2004 A1
20040219490 Gartner et al. Nov 2004 A1
20040220691 Hofmeister et al. Nov 2004 A1
20040229185 Knopp Nov 2004 A1
20040241611 Amber et al. Dec 2004 A1
20040243481 Bradbury et al. Dec 2004 A1
20040253562 Knopp Dec 2004 A1
20040259051 Brajnovic Dec 2004 A1
20050023710 Brodkin et al. Feb 2005 A1
20050042569 Phan et al. Feb 2005 A1
20050056350 Dolabdjian et al. Mar 2005 A1
20050064360 Wen et al. Mar 2005 A1
20050070782 Brodkin Mar 2005 A1
20050084144 Feldman Apr 2005 A1
20050100861 Choi et al. May 2005 A1
20050170311 Tardieu et al. Aug 2005 A1
20050214714 Wohrle Sep 2005 A1
20050271996 Sporbert et al. Dec 2005 A1
20050277089 Brajnovic Dec 2005 A1
20050277090 Anderson et al. Dec 2005 A1
20050277091 Andersson et al. Dec 2005 A1
20050282106 Sussman et al. Dec 2005 A1
20050283065 Babayoff Dec 2005 A1
20060006561 Brajnovic Jan 2006 A1
20060008763 Brajnovic Jan 2006 A1
20060008770 Brajnovic et al. Jan 2006 A1
20060019216 Priluck et al. Jan 2006 A1
20060084030 Phan et al. Apr 2006 A1
20060093988 Swaelens et al. May 2006 A1
20060094951 Dean et al. May 2006 A1
20060127848 Sogo et al. Jun 2006 A1
20060131770 Dierkes Jun 2006 A1
20060154207 Kuo Jul 2006 A1
20060210949 Stoop Sep 2006 A1
20060257817 Shelton Nov 2006 A1
20060263741 Imgrund et al. Nov 2006 A1
20060278663 Mink et al. Dec 2006 A1
20060281041 Rubbert et al. Dec 2006 A1
20070009855 Stonisch Jan 2007 A1
20070015111 Kopelman et al. Jan 2007 A1
20070031790 Raby et al. Feb 2007 A1
20070065777 Becker Mar 2007 A1
20070077532 Harter Apr 2007 A1
20070092854 Powell et al. Apr 2007 A1
20070134625 Leu Jun 2007 A1
20070141525 Cinader, Jr. Jun 2007 A1
20070211081 Quadling et al. Sep 2007 A1
20070218426 Quadling et al. Sep 2007 A1
20070269769 Marchesi Nov 2007 A1
20070281277 Brajnovic Dec 2007 A1
20070281279 Chander Dec 2007 A1
20080015740 Osann, Jr. Jan 2008 A1
20080038692 Andersson et al. Feb 2008 A1
20080044794 Brajnovic Feb 2008 A1
20080057467 Gittelson Mar 2008 A1
20080064005 Meitner Mar 2008 A1
20080070181 Abolfathi et al. Mar 2008 A1
20080085489 Schmitt Apr 2008 A1
20080090210 Brajnovic Apr 2008 A1
20080096152 Cheang Apr 2008 A1
20080114371 Kluger May 2008 A1
20080118895 Brajnovic May 2008 A1
20080124676 Marotta May 2008 A1
20080153061 Marcello Jun 2008 A1
20080153065 Brajnovic et al. Jun 2008 A1
20080153069 Holzner et al. Jun 2008 A1
20080160485 Touchstone Jul 2008 A1
20080161976 Stanimirovic Jul 2008 A1
20080166681 Weinstein et al. Jul 2008 A1
20080176189 Stonisch Jul 2008 A1
20080206714 Schmitt Aug 2008 A1
20080233537 Amber et al. Sep 2008 A1
20080241798 Holzner et al. Oct 2008 A1
20080261165 Steingart et al. Oct 2008 A1
20080281472 Podgorny et al. Nov 2008 A1
20080286722 Berckmans, III et al. Nov 2008 A1
20080300716 Kopelman et al. Dec 2008 A1
20090017418 Gittelson Jan 2009 A1
20090026643 Wiest et al. Jan 2009 A1
20090042167 Van Der Zel Feb 2009 A1
20090081616 Pfeiffer Mar 2009 A1
20090087817 Jansen et al. Apr 2009 A1
20090092948 Gantes Apr 2009 A1
20090098510 Zhang Apr 2009 A1
20090098511 Zhang Apr 2009 A1
20090123045 Quadling et al. May 2009 A1
20090123887 Brajnovic May 2009 A1
20090130630 Suttin et al. May 2009 A1
20090187393 Van Lierde et al. Jul 2009 A1
20090220134 Cahill et al. Sep 2009 A1
20090220916 Fisker et al. Sep 2009 A1
20090220917 Jensen Sep 2009 A1
20090239197 Brajnovic Sep 2009 A1
20090239200 Brajnovic et al. Sep 2009 A1
20090253097 Brajnovic Oct 2009 A1
20090259343 Rasmussen et al. Oct 2009 A1
20090263764 Berckmans, III et al. Oct 2009 A1
20090281667 Masui et al. Nov 2009 A1
20090287332 Adusumilli et al. Nov 2009 A1
20090298009 Brajnovic Dec 2009 A1
20090298017 Boerjes et al. Dec 2009 A1
20090317763 Brajnovic Dec 2009 A1
20090325122 Brajnovic et al. Dec 2009 A1
20100009314 Tardieu et al. Jan 2010 A1
20100028827 Andersson et al. Feb 2010 A1
20100038807 Brodkin et al. Feb 2010 A1
20100075275 Brajnovic Mar 2010 A1
20100092904 Esposti et al. Apr 2010 A1
20100105008 Powell et al. Apr 2010 A1
20100159412 Moss et al. Jun 2010 A1
20100159413 Kuo Jun 2010 A1
20100173260 Sogo et al. Jul 2010 A1
20100280798 Pattijn et al. Nov 2010 A1
20110008751 Pettersson Jan 2011 A1
20110010014 Oexman et al. Jan 2011 A1
20110060558 Pettersson et al. Mar 2011 A1
20110129792 Berckmans, III et al. Jun 2011 A1
20110183289 Powell et al. Jul 2011 A1
20110191081 Malfliet et al. Aug 2011 A1
20110244426 Amber et al. Oct 2011 A1
20110269104 Berckmans, III et al. Nov 2011 A1
20110275032 Tardieu et al. Nov 2011 A1
20110306008 Suttin Dec 2011 A1
20110306009 Suttin et al. Dec 2011 A1
20120010740 Swaelens et al. Jan 2012 A1
20150251359 Powell et al. Sep 2015 A1
Foreign Referenced Citations (22)
Number Date Country
10029256 Nov 2000 DE
WO-9426200 Nov 1994 WO
WO-9932045 Jul 1999 WO
WO-1999032045 Jul 1999 WO
WO-2000008415 Feb 2000 WO
WO-2001058379 Aug 2001 WO
WO-2002053055 Jul 2002 WO
WO-2003024352 Mar 2003 WO
WO-2004030565 Apr 2004 WO
WO-2004075771 Sep 2004 WO
WO-2004087000 Oct 2004 WO
WO-2004098435 Nov 2004 WO
WO-2006014130 Feb 2006 WO
WO-2006062459 Jun 2006 WO
WO-2006082198 Aug 2006 WO
WO-2007005490 Jan 2007 WO
WO-2007033157 Mar 2007 WO
WO-2007104842 Sep 2007 WO
WO-2007129955 Nov 2007 WO
WO-2008057955 May 2008 WO
WO-2008083857 Jul 2008 WO
WO-2009146164 Dec 2009 WO
Non-Patent Literature Citations (61)
Entry
“U.S. Appl. No. 11/921,818, Non Final Office Action dated Dec. 8, 2011”, 15 pgs.
“U.S. Appl. No. 11/921,818, Notice of Allowance daed Mar. 29, 2012”, 9 pgs.
“U.S. Appl. No. 11/921,818, Preliminary Amendment filed Apr. 18, 2011”, 11 pgs.
“U.S. Appl. No. 11/921,818, Preliminary Amendment filed Apr. 29, 2010”, 10 pgs.
“U.S. Appl. No. 11/921,818, Preliminary Amendment filed Dec. 7, 2007”, 10 pgs.
“U.S. Appl. No. 11/921,818, Response filed Mar. 8, 2012 to Non Final Office Action dated Dec. 8, 2011”, 19 pgs.
“U.S. Appl. No. 11/921,818, Response filed Jul. 19, 2011 to Restriction Requirement dated Jun. 30, 2011”, 10 pgs.
“U.S. Appl. No. 11/921,818, Restriction Requirement dated Jun. 30, 2011”, 6 pgs.
“U.S. Appl. No. 13/439,545, Notice of Allowance dated Jun. 2, 2014”, 8 pgs.
“U.S. Appl. No. 13/439,545, Notice of Allowance dated Jul. 16, 2014”, 5 pgs.
“U.S. Appl. No. 13/439,545, Advisory Action dated Jan. 27, 2014”, 3 pgs.
“U.S. Appl. No. 13/439,545, Final Office Action dated Sep. 30, 2013”, 15 pgs.
“U.S. Appl. No. 13/439,545, Non Final Office Action dated Mar. 12, 2014”, 18 pgs.
“U.S. Appl. No. 13/439,545, Non Final Office Action dated Jun. 12, 2013”, 16 pgs.
“U.S. Appl. No. 13/439,545, Preliminary Amendment filed Apr. 4, 2012”, 8 pgs.
“U.S. Appl. No. 13/439,545, Response filed Feb. 26, 2014 to Advisory Action dated Jan. 27, 2014”, 4 pgs.
“U.S. Appl. No. 13/439,545, Response filed May 9, 2014 to Non Final Office Action dated Mar. 12, 2014”, 14 pgs.
“U.S. Appl. No. 13/439,545, Response filed Sep. 11, 2013 to Non Final Office Action dated Jun. 12, 2013”, 12 pgs.
“U.S. Appl. No. 13/439,545, Response filed Dec. 30, 2013 to Final Office Action dated Sep. 30, 2013”, 12 pgs.
“U.S. Appl. No. 13/439,578, Non Final Office Action dated Jun. 27, 2013”, 25 pgs.
“U.S. Appl. No. 13/439,578, Notice of Allowance dated Sep. 27, 2013”, 9 pgs.
“U.S. Appl. No. 13/439,578, Preliminary Amendment filed Apr. 4, 2012”, 9 pgs.
“U.S. Appl. No. 13/439,578, Response filed Jun. 27, 2013 to Non Final Office Action dated Sep. 11, 2013”, 17 pgs.
“U.S. Appl. No. 14/491,510, Non Final Office Action dated Mar. 10, 2015”, 8 pgs.
“U.S. Appl. No. 14/491,510, Notice of Allowance dated May 11, 2015”, 9 pgs.
“U.S. Appl. No. 14/491,510, Preliminary Amendment filed Sep. 19, 2014”, 6 pgs.
“U.S. Appl. No. 14/491,510, Preliminary Amendment filed Dec. 9, 2014”, 7 pgs.
“U.S. Appl. No. 14/491,510, Response filed Apr. 8, 2015 to Non Final Office Action dated Mar. 10, 2015”, 11 pgs.
“U.S. Appl. No. 14/716,571, First Action Interview—Pre-Interview Communication dated Sep. 26, 2017”, 4 pgs.
“U.S. Appl. No. 14/716,571, Notice of Allowability dated Mar. 29, 2018”, 2 pgs.
“U.S. Appl. No. 14/716,571, Notice of Allowance dated Mar. 22, 2018”, 5 pgs.
“U.S. Appl. No. 14/716,571, Preliminary Amendment filed May 19, 2015”, 6 pgs.
“U.S. Appl. No. 14/716,571, Preliminary Amendment filed May 21, 2015”, 8 pgs.
“U.S. Appl. No. 14/716,571, Response filed Nov. 27, 2017 to First Action Interview—Pre-Interview Communication dated Sep. 26, 2017”, 14 pgs.
“European Application Serial No. 06785810.0, Extended European Search Report dated Jun. 28, 2013”, 10 pgs.
“European Application Serial No. 06785810.0, Office Action dated Feb. 27, 2017”, 5 pgs.
“European Application Serial No. 06785810.0, Office Action dated Mar. 3, 2016”, 4 pgs.
“European Application Serial No. 06785810.0, Response filed Jan. 27, 2014 to Extended European Search Report dated Jun. 28, 2013”, 6 pgs.
“European Application Serial No. 06785810.0, Response filed Jul. 6, 2017 to Office Action dated Feb. 27, 2017”, 38 pgs.
“European Application Serial No. 06785810.0, Response filed Jul. 20, 2016 to Communication Pursuant to Article 94(3) EPC dated Mar. 3, 2016”, 10 pgs.
“European Application Serial No. 15161961.6, Communication Pursuant to Article 94(3) EPC dated Jun. 27, 2016”, 5 pgs.
“European Application Serial No. 15161961.6, Extended European Search Report dated Jul. 6, 2015”, 6 pgs.
“European Application Serial No. 15161961.6, Response filed Mar. 17, 2016 to Extended European Search Report dated Jul. 6, 2015”, 8 pgs.
“European Application Serial No. 15161961.6, Response filed Apr. 13, 2017 to Office Action filed Feb. 3, 2017”, 8 pgs.
“International Application Serial No. PCT/US2006/025292, International Preliminary Report on Patentability dated Sep. 25, 2009”, 7 pgs.
“International Application Serial No. PCT/US2006/025292, International Search Report dated Jan. 30, 2007”, 1 pgs.
“International Application Serial No. PCT/US2006/025292, Written Opinion dated Jan. 30, 2007”, 5 pgs.
“International Application Serial No. PCT/US2006/040951, International Search Report dated Sep. 25, 2007”, 1 pg.
“International Application Serial No. PCT/US2009/034463, International Search Report dated Apr. 30, 2009”, 2 pgs.
“International Application Serial No. PCT/US2009/034463, Written Opinion dated Apr. 30, 2009”, 6 pgs.
“Navigator™ System for CT Guided Surgery Manual”, BIOMET3i, (2007), 34 pgs.
“Robots are ready for medical manufacturing”, Retrieved from MachineDesign.Com, <URL: htt2://machinedesign.corn/articlc/rohots-are-readv-for-mcdicalrnanufacturing-0712>, (Jul. 12, 2007), 7 pgs.
“Surgical Glue May Help to Eliminate Suturing for Implants”, MedNEWS, Retrieved from MediNEWS. Direct, (Dec. 21, 2007), 1 pg.
Brief, Jakob, et al., “Accuracy of image-guided implantology”, Retrieved from Google: <URL:sitemaker.umich.edu/sarmentlah/filcs/robodent vs denx coir 05.pdf>, (Aug. 20, 2004), 7 pgs.
Eggbeer, D, “”, The computer-aided design and rapid prototyping fabrication of removable partial denture frameworks, Proc. IMechE., J. Engineering in Medicine, vol. 219, Part H, (2005), 8 pgs.
Goulette, Francois, “A New Method and a Clinical case for Computer Assisted Dental Implantology”, Retrieved from Summer European university in surgical Robotics,, [Online] retrieved from the internet: <URL:www.linnm.frimanifs/UEE/docs/students/goulette.pdf>, (Sep. 6, 2003), 7 pgs.
U.S. Appl. No. 11/921,818 U.S. Pat. No. 8,185,224, filed Dec. 7, 2007, Method for Manufacturing Dental Implant Components.
U.S. Appl. No. 13/439,545 U.S. Pat. No. 8,855,800, filed Apr. 4, 2012, Method for Manufacturing Dental Implant Components.
U.S. Appl. No. 14/491,510 U.S. Pat. No. 9,108,361, filed Sep. 19, 2014, Method for Manufacturing Dental Implant Components.
U.S. Appl. No. 14/716,571 U.S. Pat. No. 10,022,916, filed May 19, 2015, Method for Manufacturing Dental Implant Components.
U.S. Appl. No. 13/439,578 U.S. Pat. No. 8,612,037, filed Apr. 4, 2012, Method for Manufacturing Dental Implant Components.
Related Publications (1)
Number Date Country
20190061260 A1 Feb 2019 US
Provisional Applications (1)
Number Date Country
60695501 Jun 2005 US
Divisions (1)
Number Date Country
Parent 11921818 US
Child 13439545 US
Continuations (3)
Number Date Country
Parent 14716571 May 2015 US
Child 16014617 US
Parent 14491510 Sep 2014 US
Child 14716571 US
Parent 13439545 Apr 2012 US
Child 14491510 US