This U.S. non-provisional patent application claims priority under 35 U.S.C. § 119 of Korean Patent Application No. 10-2020-0185029, filed on Dec. 28, 2020, the entire contents of which are hereby incorporated by reference.
The present disclosure herein relates to a method for manufacturing an electronic field emission device.
Nanomaterials used as emitters may emit electrons to the outside of nanomaterials through a quantum tunneling effect caused by external electric fields. For the effective occurrence of the electron emission process, a tip of the emitter has to have a sharp shape. Therefore, nanomaterials, each of which has a thin and long shape, are widely used for an emitter of the electric field emission device. For example, nanomaterials such as carbon nanotubes (CNT) may be used for the emitter of the electric field emission device. In the case in which the tip of the emitter has the sharp shape, electric fields may be concentrated into the tip of the emitter to improve electron emission efficiency. Recently, as electric field emission devices such as X-ray tubes, which require high-current emitter characteristics, are widely used throughout the industry, studies on an emitter, which has an advantageous structure for electric field emission, is easy to be manufactured, and has excellent durability, and an electric field emission device including the same are being actively conducted.
The present disclosure provide a method for manufacturing an electric field emission device having improved reliability.
Technical objects to be solved by the present invention are not limited to the aforementioned technical objects and unmentioned technical objects will be clearly understood by those skilled in the art from the specification and the appended claims.
An embodiment of the inventive concept provides a method for manufacturing an electric field emission device, the method including: winding a carbon nanotube yarn around outer circumferential surfaces of a metal plate in a first direction; pressing both side surfaces of the metal plate through a pair of metal structures, wherein a top surface of the metal plate is exposed from the metal structures, and an area of the top surface of the metal plate is less than that of each of both the side surfaces of the metal plate; and cutting the carbon nanotube yarn at an edge portion of the top surface of the metal plate in the first direction to form a plurality of emitters.
The accompanying drawings are included to provide a further understanding of the inventive concept, and are incorporated in and constitute a part of this specification. The drawings illustrate exemplary embodiments of the inventive concept and, together with the description, serve to explain principles of the inventive concept. In the drawings:
Embodiments of the present invention will be described with reference to the accompanying drawings so as to sufficiently understand constitutions and effects of the present invention. The present disclosure may, however, be embodied in different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the present invention to those skilled in the art. Further, the present invention is only defined by scopes of claims. In the accompanying drawings, the components are shown enlarged for the sake of convenience of explanation, and the proportions of the components may be exaggerated or reduced for clarity of illustration.
Referring to
The outer circumferential surfaces of the metal plate 10 may include a top surface, a bottom surface, and both side surfaces connecting the top surface to the bottom surface. An area of each of the top and bottom surfaces of the metal plate 10 may be less than that of each of the side surfaces.
The top surface of the metal plate 10 may have a first length in the first direction D1. The top surface of the metal plate 10 may have a second length in a second direction D2 that is parallel to the top surface and crosses the first direction D1. The second length of the metal plate 10 may also be referred to as a thickness of the metal plate 10. For example, the top surface of the metal plate 10 may have a rectangular structure in which the first length is greater than the second length. The metal plate 10 may have a height in a third direction D3 that is perpendicular to the top surface, and the height may be less than the first length, but greater than the second length.
The carbon nanotube yarn 20 may have a form in which carbon nanotube bundles 22 are entangled like fibers. For example, the carbon nanotube bundles 22 may be combined to form the carbon nanotube yarn 20. A diameter of each of the carbon nanotube bundles 22 may range of about 1 μm to about 10 μm, and a length 22L may range of about 1 μm to about 2 cm.
Referring to
Referring to
The top and bottom surfaces of the metal plate 10 may be exposed from the pair of metal structures 30. The carbon nanotube yarn 20 may have a line shape extending in the second direction D2 to provide the form of patterns spaced apart from each other in the first direction D1 on the top and bottom surfaces.
Referring to
Then, the segmented carbon nanotube yarn patterns may protrude upward by using an adhesive material such as an adhesive sheet. A portion of each of the carbon nanotube yarn patterns, which protrude above the top surface of the metal plate 10, may be referred to as an emitter 24. A height H of the emitter 24 may be substantially equal to the thickness T of the metal plate 10.
The emitters 24 may be disposed at regular intervals along the first direction D1. The emitters 24 may form an emitter array 24A. As a result, an electric field emission source 100 including the emitter array 24A, the pair of metal structures 30, the metal plate 10, and the conductive filler 40 may be provided.
In a process of attaching and detaching the carbon nanotube yarn patterns and the top surface of the metal plate 10 with the adhesive sheet, some of the carbon nanotube yarn patterns may be removed. Specifically, the carbon nanotube bundles 22, which are not fixed by the metal plate 10 and the metal structures 30, among the carbon nanotube bundles 22 constituting the carbon nanotube yarn patterns may be attached to the adhesive sheet and then removed.
The length 22L of the carbon nanotube bundle 22 of
Then, the conductive filler 40 may be melted and hardened through heat treatment. The conductive filler 40 may cover non-protruding cut surfaces of the carbon nanotube patterns. In addition, the conductive filler 40 may allow the carbon nanotube patterns to be strongly fixed by the metal plate 10 and the metal structures 30. The electric field emission source 100 may be connected to a cathode electrode (not shown).
Referring to
An anode electrode (not shown) may be provided above the gate electrode 50. The electric field emission device including the electric field emission source 100, the cathode electrode, the gate electrode 50, and the anode electrode will be described in detail with reference to
Referring to
The plurality of metal plates 10 may be disposed to be spaced apart from each other in the second direction D2. The metal plates 10 may be fixed by metal structures 30 disposed on both sides. The emitter arrays 24A may be disposed on edge portions of each of top surfaces of the metal plates 10. The emitter arrays 24A may be spaced apart from each other in the second direction D2.
Except for the outermost metal structures 30, a conductive filler 40 may be applied to both side surfaces of the metal structures 30 disposed at the inside. Thus, one side surface of each of the metal structures 30 disposed at the inside may be coupled to any one metal plate 10, and the other side surface may be coupled to the other metal plate 10.
Referring to
The electric field emission device according to embodiments of the inventive concept includes the electric field emission source 110 of
The electric field emission source 110 may be provided on the cathode electrode 200. The cathode electrode 200 may include a conductive material, and the conductive material may include a material such as copper (Cu), aluminum (Al), molybdenum (Mo), and the like.
The electric field emission source 110 may be in contact with the cathode electrode 200 or may be coupled to the cathode electrode 200 through a conductive material therebetween.
The cathode electrode 200 and the anode electrode 300 may be spaced apart from each other in the third direction D3. The cathode electrode 200, the anode electrode 300, and the gate electrode 50 may be electrically connected to an external power source (not shown). For example, a positive voltage or a negative voltage may be applied to the cathode electrode 200 or may be connected to a ground power source. A voltage having a potential that is relatively higher than that of the cathode electrode 200 may be applied to the anode electrode 300 and the gate electrode 50.
Each of the anode electrode 300 and the gate electrode 50 may include a conductive material. For example, the conductive material may include a material such as copper (Cu), aluminum (Al), molybdenum (Mo), and the like. The anode electrode 300 may be a rotatable anode electrode 300 rotating in one direction or a fixed anode electrode 300. The gate electrode 50 may be disposed between the electric field emission source 110 and the anode electrode 300. The gate electrode 50 may be disposed adjacent to the electric field emission source 110 rather than the anode electrode 300.
In a plan view, each of the anode electrode 300 and the gate electrode 50 may be provided in a disk shape, but is not limited thereto.
The gate electrode 50 may include a base 52 and a protrusion 54. The base 52 may have a disk shape, and the protrusion 54 may have a hollow cylindrical shape.
The gate electrode 50 may include a plurality of gate holes 51 passing therethrough. The gate holes 51 may vertically overlap an emitter array 24A. Each of the gate holes 51 may have a slit shape as illustrated in
A voltage may be applied to the metal structure 30 by being electrically connected to the cathode electrode 200. Specifically, the emitter 24 may emit electrons and/or electron beams by electric fields generated by a voltage applied to the cathode electrode 200, the anode electrode 300, and the gate electrode 50.
The electron beam emitted from the emitter 24 may proceed toward the anode electrode 50 through the gate holes 50h. The electrons and/or the electron beam emitted from the emitter 24 may be generated and accelerated in a vacuum state.
In the case of the electric field emission device, it is important to maintain an internal vacuum environment for the generation and acceleration of the electron beam. In the case of the related art, since an additional organic adhesive is used in a process of fixing the emitter to the cathode electrode, the maintenance of the internal vacuum environment is somewhat weak. In the case of the present disclosure, since the emitter is fixed using a conductive filler and metal structures without using the organic adhesive, the electric field emission device may be stably driven during the electron emission in the vacuum environment. In addition, the present disclosure may include a process of cutting a carbon nanotube yarn in a first direction after winding the carbon nanotube yarn around an outer circumferential surface of a metal plate at regular intervals along the first direction and a process of surface-treating the cut carbon nanotube yarns using an adhesive tape to form an emitter and remove an unattached carbon nanotube bundle. As a result, arc may be prevented from being generated even at a high voltage to improve reliability of the electric field emission device.
The housing 400 may include an insulating member. The housing 400 may include a solid material even in a vacuum state. For example, the housing 400 may include ceramics or glass based on inorganic compounds such as aluminum oxide and aluminum nitride.
The target 320 may be provided on a bottom surface of the anode electrode 300. The target 320 may be a material that emits X-rays when electron beams collide with each other. The target 320 may include, for example, at least one of molybdenum (Mo), tantalum (Ta), tungsten (W), copper (Cu), or gold (Au).
The electric field emission device may further include a focusing electrode 500 provided between the gate electrode 50 and the anode electrode 300. The focusing electrode 500 serves to adjust a traveling direction of the electron beam.
In the method for manufacturing the electric field emission device according to the embodiments of the inventive concept, the carbon nanotube yarn may be wound around the outer circumferential surface of the metal plate at regular intervals along the first direction. Thereafter, the carbon nanotube yarn may be fixed by pressing both the side surface of the metal plate by using the pair of metal structures. Subsequently, the process of cutting the carbon nanotube yarn in the first direction may be performed. The cut carbon nanotube yarns may be surface-treated using the adhesive tape or the like to form the emitter array and remove the unfixed carbon nanotube yarns. As a result, the arc or the like may be prevented from occurring even at the high voltage to improve the reliability of the electric field emission device.
Although the embodiment of the inventive concept is described with reference to the accompanying drawings, those with ordinary skill in the technical field of the inventive concept pertains will be understood that the present disclosure can be carried out in other specific forms without changing the technical idea or essential features. Thus, the above-disclosed embodiments are to be considered illustrative and not restrictive.
Number | Date | Country | Kind |
---|---|---|---|
10-2020-0185029 | Dec 2020 | KR | national |
10-2021-0179102 | Dec 2021 | KR | national |