Method for manufacturing lateral germanium detectors

Information

  • Patent Grant
  • 8343792
  • Patent Number
    8,343,792
  • Date Filed
    Monday, October 27, 2008
    16 years ago
  • Date Issued
    Tuesday, January 1, 2013
    12 years ago
Abstract
An improved method for manufacturing a lateral germanium detector is disclosed. A detector window is opened through an oxide layer to expose a doped single crystalline silicon layer situated on a substrate. Next, a single crystal germanium layer is grown within the detector window, and an amorphous germanium layer is grown on the oxide layer. The amorphous germanium layer is then polished to leave only a small portion around the single crystal germanium layer. A dielectric layer is deposited on the amorphous germanium layer and the single crystal germanium layer. Using resist masks and ion implants, multiple doped regions are formed on the single crystal germanium layer. After opening several oxide windows on the dielectric layer, a refractory metal layer is deposited on the doped regions to form multiple germanide layers.
Description
BACKGROUND OF THE INVENTION

1. Technical Field


The present invention relates to optical detectors in general, and in particular to a method for manufacturing lateral germanium detectors.


2. Description of Related Art


Photodetection in the near-infrared (IR) regime has many applications, such as telecommunications, thermal imaging, etc. InGaAs-based PIN photodetectors are commonly used for telecommunication applications due to their high responsivity and speed. However, the majority of the InGaAs-based detectors are normal incidence detectors, and the integration of such devices on silicon surfaces can be very expensive. Also, integration of high-speed InGaAs detectors requires special optics to focus light into a small active area, which has been found to reduce device performance.


Germanium-based detectors are known to be a suitable alternative. However, germanium-based detectors exhibit a higher dark current than InGaAs-based detectors, which limit their application in the telecommunications industry. In recent years, attempts have been made to improve the performance of polycrystalline germanium-based detectors for these applications. One exemplary prior art poly-germanium detector is described by Colace et al. in an article entitled Efficient high-speed near-infrared Ge photodetectors integrated on Si substrates (Applied Physics Letters, vol. 76, p. 1231 et seq., 2000).


The present disclosure provides an improved method for manufacturing lateral germanium-based detectors.


SUMMARY OF THE INVENTION

In accordance with a preferred embodiment of the present invention, a detector window is opened through an oxide layer to expose a doped single crystalline silicon layer located on a substrate. Next, a single crystal germanium layer is grown within the detector window, and an amorphous germanium layer is grown on the oxide layer. The amorphous germanium layer is then polished to leave only a small portion around the single crystal germanium layer. A dielectric layer is deposited on the amorphous germanium layer and the single crystal germanium layer. Using resist masks and implants, doped regions are formed on the single crystal germanium layer. After opening several oxide windows on the dielectric layer, a refractory metal layer is deposited on the doped regions to form multiple germanide layers.


All features and advantages of the present invention will become apparent in the following detailed written description.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention itself, as well as a preferred mode of use, further objects, and advantages thereof, will best be understood by reference to the following detailed description of an illustrative embodiment when read in conjunction with the accompanying drawings, wherein:



FIGS. 1-9 illustrate successive steps of a method for fabricating a lateral germanium-based detector, in accordance with a preferred embodiment of the present invention.





DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT

Referring now to the drawings and in particular to FIGS. 1-9, there are illustrated successive steps of a method for fabricating a lateral germanium-based detector, in accordance with a preferred embodiment of the present invention. Initially, a dry etch process is utilized to open a detector window 11 through a nitride layer 12 (˜250 Å) and an oxide layer 14 (˜6,000 Å) to expose a single crystalline silicon layer 10 situated on an insulator substrate, as shown in FIG. 1.


A single crystal germanium layer 15 is then grown within detector window 11, as depicted in FIG. 2. Four different gases are used for the growth of single crystal germanium layer 15, namely, hydrogen, 100% silane (SiH4), 100% germane (GeH4), and 100% diborane (B2H6). The germanium growth process uses silicon and silicon-germanium seed layers to create an abrupt transition from the underlying single crystal silicon surface and the single crystal germanium growth. The usage of the seed layers allows for a subsequent single crystal germanium growth, even across very large exposed single crystal silicon regions. For the present embodiment, the bottom portion of the germanium growth is in-situ doped with boron at a concentration of approximately 1×E21 atoms/cm3. The boron concentration is graded with the highest concentration at the bottom of single crystal germanium layer 15 as a doped germanium layer 13.


Because of the usage of the silicon seed layer, the germanium growth is not completely selective, and some germanium can form over nitride layer 12 as an amorphous germanium layer 16, as depicted in FIG. 2. Amorphous germanium layer 16 may serve as a sacrificial polish layer for subsequent processing.


Doped germanium layer 13 minimizes the electric fields at the bottom of single crystal germanium layer 15, which can decrease detector noise and dark currents caused by defects commonly located at the bottom of single crystal germanium layer 15. The boron in doped germanium layer 13 can be replaced by other dopants.


Single crystal germanium layer 15 and amorphous germanium layer 16 are then polished via a chemical mechanical polish (CMP), as shown in FIG. 3. It is preferable to stop the CMP process before amorphous germanium layer 16 is completely removed. This is because polishing too far can expose voids and crystalline defects that tend to form at the edge of detector window 11 (from FIG. 1) and single crystal germanium layer 15, and polishing too close to the crystalline defects can create voids by tearing out entire crystalline defects.


Using a mask, the remaining portion of amorphous germanium layer 16 is removed via a dry etch, leaving a portion of amorphous germanium layer 16 located around single crystal germanium layer 15, as depicted in FIG. 4.


After a tetraethyl orthosilicate (TEOS) layer 17 has been deposited on single crystal germanium layer 15 and amorphous germanium layer 16, multiple n+ implant regions 18 are formed on single crystal germanium layer 15, as shown in FIG. 5, via an appropriate mask and ion implants.


TEOS layer 17 may be replaced by other types of oxides or dielectrics including nitride. For example, germanium oxy-nitride can be used instead of TEOS in layer 17 in order to lower the stress over amorphous germanium layer 16, which should reduce noise and dark current. TEOS layer 17 is utilized to seal the edge of a germanium detector at which defects and voids are most prone to be formed.


Next, multiple p+ doped germanium regions 19 are formed on single crystal germanium layer 15, as depicted in FIG. 6, via a mask. All n+ implant regions 18 and p+ doped germanium regions 19 can be activated via annealing. Preferably, implant masks are utilized to keep the n+ and p+ dopants away from the defects and voids at the edge of single crystal germanium layer 15. Keeping the n+ and p+ dopants away from the defect-prone edge regions can decrease detector noise and dark current.


TEOS (or germanium oxy-nitride) layer 17 is then patterned using a resist mask, and a dry etch is utilized to open multiple oxide windows 20, as shown in FIG. 7. Oxide windows 20 expose n+ implant regions 18 and p+ doped germanium regions 19 for respective germanide formations later.


A titanium deposition is performed on n+ implant regions 18 and p+ doped germanium regions 19 that are exposed through oxide windows 20. One or more heat treatments are then utilized to form TiGe material 21 within oxide windows 20, as depicted in FIG. 8. Since no TiGe can be formed over TEOS layer 17, non-reacted Ti layer 22 remains to be situated on top of TEOS layer 17, as depicted in FIG. 8.


The remaining non-reacted Ti layer 22 located on top of TEOS layer 17 may be removed using a resist mask and dry etch, as depicted in FIG. 9. Alternatively, the remaining non-reacted Ti layer 22 located on top of TEOS layer 17 may be removed with a wet strip. Generally, a wet strip is not the preferred choice because there is some risk that the wet strip may remove TiGe material 21 or create pits in single crystal germanium layer 15. The processing options are not limited to titanium germanide as any refractory metal may be used to form the germanide.


At this point, a P-i-N germanium detector having a lateral configuration is formed, and conventional semiconductor processing techniques can be utilized to fabricate dielectrics and contacts at the top of the P-i-N germanium detector. The detector shown in FIG. 9 may be used to detect light from above single crystal germanium layer 15, and may be configured as a focal plane array. Alternatively, the detector shown in FIG. 9 may be configured to detect light from an underlying waveguide by using single crystalline silicon layer 10 as the end of a waveguide. The detector shown in FIG. 9 may also be configured as a butt coupled device where the light comes from a waveguide that is coupled from the side of single crystal germanium layer 15.


As has been described, the present invention provides an improved method for manufacturing a lateral germanium detector.


While the invention has been particularly shown and described with reference to a preferred embodiment, it will be understood by those skilled in the art that various changes in form and detail may be made therein without departing from the spirit and scope of the invention.

Claims
  • 1. A method for fabricating a lateral germanium detector, said method comprising: opening a detector window through an oxide layer to expose a single crystalline silicon layer situated on a substrate;growing a single crystal germanium layer within said detector window, and an amorphous germanium layer on said oxide layer;polishing and removing said amorphous germanium layer until a portion of said amorphous germanium layer is located around said single crystal germanium layer;depositing a dielectric layer on said amorphous germanium layer and said single crystal germanium layer;forming a plurality of doped regions on said single crystal germanium layer;opening a plurality of oxide windows on said dielectric layer; anddepositing a refractory metal layer on said plurality of doped regions to form a plurality of germanide layers.
  • 2. The method of claim 1, wherein said lateral germanium detector is in a P-i-N configuration.
  • 3. The method of claim 1, wherein said lateral germanium detector includes and a p+ doped germanium layer.
  • 4. The method of claim 1, wherein said germanium detector includes and an n+ doped germanium layer.
  • 5. The method of claim 1, wherein said dielectric (TEOS) layer is a tetraethyl orthosilicate layer.
  • 6. The method of claim 1, wherein said dielectric layer is a germanium oxy-nitride layer.
  • 7. The method of claim 1, wherein said dielectric layer is a silicon nitride layer.
  • 8. The method of claim 1, wherein said plurality of doped regions are confined within said detector window.
  • 9. The method of claim 1, wherein said refractory metal deposition is confined within said detector window.
  • 10. The method of claim 1, wherein said amorphous germanium layer is completely removed in region located around said single crystal germanium layer.
PRIORITY CLAIM

The present application claims benefit of priority under 35 U.S.C. §365 to the previously filed international patent application number PCT/US08/081305 filed on Oct. 27, 2008, assigned to the assignee of the present application, and having a priority date of Oct. 25, 2007, based upon U.S. provisional patent application No. 61/000,346. The contents of both applications are incorporated herein by reference. The present application is related to co-pending application Ser. No. 12/201,943 filed on Aug. 29, 2008, the contents of which are incorporated herein by reference.

STATEMENT OF GOVERNMENT INTEREST

The present invention was made with United States Government assistance under Contract No. HR0011-05-C-0027 awarded by Defense Advanced Research Projects Agency (DARPA). The United States Government has certain rights in the present invention.

PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US2008/081305 10/27/2008 WO 00 2/9/2010
Publishing Document Publishing Date Country Kind
WO2009/055778 3/30/2009 WO A
US Referenced Citations (69)
Number Name Date Kind
4420258 Burns et al. Dec 1983 A
4547072 Yoshida et al. Oct 1985 A
4748617 Drewlo May 1988 A
4921354 SooHoo May 1990 A
5165001 Takagi et al. Nov 1992 A
5281805 Sauer Jan 1994 A
5371591 Martin et al. Dec 1994 A
5430755 Perlmutter Jul 1995 A
5625636 Bryan et al. Apr 1997 A
5674778 Lee et al. Oct 1997 A
5703989 Khan et al. Dec 1997 A
5736461 Berti et al. Apr 1998 A
5810924 Legoues et al. Sep 1998 A
5828476 Bonebright et al. Oct 1998 A
5834800 Jalali-Farahani et al. Nov 1998 A
5994724 Morikawa Nov 1999 A
6117771 Murphy et al. Sep 2000 A
6242324 Kub et al. Jun 2001 B1
6331445 Janz et al. Dec 2001 B1
6387720 Misheloff et al. May 2002 B1
6400996 Hoffberg et al. Jun 2002 B1
6477285 Shanley Nov 2002 B1
6605809 Engels et al. Aug 2003 B1
6677655 Fitzergald Jan 2004 B2
6680495 Fitzergald Jan 2004 B2
6723622 Murthy et al. Apr 2004 B2
6738546 Deliwala May 2004 B2
6785447 Yoshimura et al. Aug 2004 B2
6795622 Forrest et al. Sep 2004 B2
6850252 Hoffberg Feb 2005 B1
6861369 Park Mar 2005 B2
6936839 Taylor Aug 2005 B2
6968110 Patel et al. Nov 2005 B2
7006881 Hoffberg et al. Feb 2006 B1
7008813 Lee et al. Mar 2006 B1
7010208 Gunn, III et al. Mar 2006 B1
7043106 West et al. May 2006 B2
7072556 Gunn, III et al. Jul 2006 B1
7082247 Gunn, III et al. Jul 2006 B1
7103252 Ide Sep 2006 B2
7139448 Jain et al. Nov 2006 B2
7215845 Chan et al. May 2007 B1
7218809 Zhou et al. May 2007 B2
7218826 Gunn, III et al. May 2007 B1
7259031 Dickinson et al. Aug 2007 B1
7272279 Ishikawa et al. Sep 2007 B2
7315679 Hochberg et al. Jan 2008 B2
7333679 Takahashi Feb 2008 B2
7348230 Matsuo et al. Mar 2008 B2
7356221 Chu et al. Apr 2008 B2
7736934 Carothers et al. Jun 2010 B2
20030026546 Deliwala Feb 2003 A1
20030104658 Furukawa et al. Jun 2003 A1
20030183825 Morse Oct 2003 A1
20040146431 Scherer et al. Jul 2004 A1
20040190274 Saito et al. Sep 2004 A1
20050094938 Ghiron et al. May 2005 A1
20050127275 Yang Jun 2005 A1
20050184354 Chu et al. Aug 2005 A1
20060158723 Voigt et al. Jul 2006 A1
20060238866 Von Lerber Oct 2006 A1
20060240667 Matsuda et al. Oct 2006 A1
20070099315 Maa et al. May 2007 A1
20070116398 Pan et al. May 2007 A1
20070200181 Rhodes Aug 2007 A1
20070202254 Ganguli et al. Aug 2007 A1
20080159751 Matsui et al. Jul 2008 A1
20080240180 Matsui et al. Oct 2008 A1
20110147870 Ang et al. Jun 2011 A1
Foreign Referenced Citations (7)
Number Date Country
0 818 693 Jan 1998 EP
1 067 409 Jan 2001 EP
9314514 Jul 1993 WO
0127669 Apr 2001 WO
0216986 Feb 2002 WO
2004088724 Oct 2004 WO
2007149055 Dec 2007 WO
Related Publications (1)
Number Date Country
20120252158 A1 Oct 2012 US
Provisional Applications (1)
Number Date Country
61000346 Oct 2007 US