This application claims the benefit of Korean Patent Application No. 10-2006-137643, filed on Dec. 29, 2006, which is hereby incorporated by reference for all purposes as if fully set forth herein.
1. Field of the Invention
The present invention relates to a light emitting device, and more particularly, to a method for manufacturing light emitting devices. The method may reduce the inner pressure of a laminated image emitting device panel to prevent failure of the panel.
2. Discussion of the Related Art
Thin light emitting devices for use as information display devices have recently gained popularity. These light emitting devices may be as thin as a sheet of paper. The light emitting device itself may be a self-emission device that uses a thin light emitting layer between electrodes. The device has many advantages, such as low power consumption, thinness, and self-emission.
Light emitting devices include pixels arranged in a matrix to display an image. Each sub-pixel may include a light emitting cell and a drive portion that independently drives the light emitting cell.
The light emitting cell may include a pixel electrode connected to the drive portion, a common cathode connected to ground, and a light emitting element formed between the pixel electrode and the common cathode.
The drive portion may include a storage capacitor and two transistors connected between a power supply line, a data line, and a gate line. The drive portion drives the pixel electrode of the light emitting cell. The power supply line may provide common drive power, the data line may provide a video data signal, and the gate line may provide a scan signal.
Drive portions and light emitting portions may be formed to oppose each other on two substrates. The two substrates may be laminated together with a seal, thereby providing an encapsulation structure. This structure may be provided in a vacuum chamber. The drive portions drive the light emitting portions to emit light through the substrates.
If the substrates of the light emitting device are laminated using an inert gas at room temperature, the initial inner pressure between the upper substrate and lower substrate of the light emitting device including light emitting portions on the upper substrate and drive portions on the lower substrate as described above is about 30-40 torr.
However, the inner pressure of a related art light emitting device will increase to above 100 torr during reliability tests involving high temperature and high humidity.
Accordingly, the present invention is directed to a method for manufacturing light emitting devices and light emitting display devices that substantially obviate one or more problems due to limitations and disadvantages of the related art.
An advantage of the present invention is to provide a method for manufacturing light emitting devices and light emitting display devices that may reduce the inner pressure of a laminated image light emitting device panel, thereby preventing failure of the panel.
Additional features and advantages of the invention will be set forth in part in the description which follows, and in part will be apparent from the description, or may be learned by practice of the invention. These and other advantages of the invention will be realized and attained by the structure and method particularly pointed out in the written description and claims hereof as well as the appended drawings.
To achieve these and other advantages and in accordance with the purpose of the present invention, as embodied and broadly described, a method for manufacturing a light emitting device includes holding a first substrate with a lower chuck located in a vacuum chamber; holding a second substrate with an upper chuck located opposite the first chuck in the vacuum chamber; creating a high vacuum in the vacuum chamber; correcting positions of the first substrate and the second substrate; supplying gas having a temperature of about 50 to about 200° C. into the vacuum chamber; temporarily laminating the first substrate and the second substrate; venting the vacuum chamber; and bonding the first substrate and the second substrate.
In another aspect of the present invention, a light emitting device includes an upper substrate; a lower substrate; and a seal maintaining a vacuum between the upper substrate and the lower substrate, wherein a pressure of the vacuum between the upper substrate and the lower substrate is between about 20 to about 35 torr.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are intended to provide further explanation of the invention as claimed.
The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this application, illustrate embodiment(s) of the invention and together with the description serve to explain the principles of the invention. In the drawings:
Reference will now be made in detail to embodiments of the present invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or similar parts.
As shown in
The first substrate 100 may include an insulating substrate (not shown) and signal lines (not shown), drive portions 110 including thin film transistors, and a seal 300 formed on the insulating substrate.
The second substrate 200 may include contact electrodes 220 and light emitting portions 210. Contact electrodes 220 may be formed so as to contact drive portions 110. Each light emitting portion 210 may include a light emitting layer between first and second electrodes.
The vacuum chamber 50 includes the lower chuck 40 onto which the first substrate 100 is loaded and the upper chuck 30 onto which the second substrate 200 is loaded in order to laminate the first substrate 100 and the second substrate 200 together. In the process of temporarily laminating the first substrate 100 and the second substrate 200, the conditions of the vacuum chamber 50 include a high vacuum with an inner pressure of 1×10−3 torr or less.
The upper chuck 30 is provided in the vacuum chamber 50 at an upper inner portion of the vacuum chamber 50 to hold the second substrate 200 loaded onto the upper chuck 30. The upper chuck 30 may include a holding device (not shown) to hold the second substrate 200 through a vacuum or electrostatic holding method. Here, the upper chuck 30 may include a holding releaser (not shown) to allow free fall of the second substrate 200 held by the upper chuck 30.
The lower chuck 40 is provided in the vacuum chamber 50 at a lower inner portion of the vacuum chamber opposite the upper chuck 30 to hold the first substrate 100 loaded onto the lower chuck 40. The lower chuck 40 may include a holding device (not shown) to hold the first substrate 100 through a vacuum or electrostatic holding method. Here, the lower chuck 40 may include a position aligner to align the positions of the first substrate 100 and the second substrate 200.
The high vacuum pump 80 may create a high vacuum in the vacuum chamber 50 by sucking air or gas from the vacuum chamber 50 through a high vacuum pump tube 82a so that the air or gas is discharged from the vacuum chamber 50. A first valve 82b that is opened and closed by a controller (not shown) is provided on the high vacuum pump tube 82a.
The gas supply unit 60 supplies a heated gas into the vacuum chamber 50 through a plurality of gas supply tubes. Gas supply tubes 62a and 64a illustrate the gas tubing, however, more than two gas supply tubes may be employed. The gas supply tubes 62a and 64a pass through an upper wall of the vacuum chamber 50 and may be connected to the upper chuck 30. The upper chuck 30 includes a plurality of gas supply holes connected to the plurality of gas supply tubes 62a and 64a. Thus, a heated gas from the gas supply unit 60 is supplied into the vacuum chamber 50 through the plurality of gas supply holes formed in the upper chuck 30. The heated gas may be an inert gas such as nitrogen (N2) or argon (Ar) and is heated to a temperature of about 50° C. to about 200° C.
Gas valves 62b and 64b that are closed and opened by the controller are provided respectively on the gas supply tubes 62a and 64a.
The vent unit 70 vents the interior of the vacuum chamber 50 by supplying a vent gas into the vacuum chamber 50 through a vent tube 72a so that the temporarily laminated first substrate 100 and second substrate 200 are completely laminated together by the pressure difference between the inner pressure of the vacuum chamber 50 and the pressure of the gap between the first substrate 100 and the second substrate 200. That is, the vent unit 70 allows the interior of the vacuum chamber 50 to be brought into a lower vacuum state than the already-existing high vacuum state so that the laminated first substrate 100 and second substrate 200 are pressed against each other by the pressure difference.
A second valve 72b which is opened and closed by the controller is provided on the vent tube 72a.
Reference will now be made to the method for manufacturing light emitting devices according to an embodiment of the present invention with reference to
As shown in
Then, as shown in
Then, the positions of the first substrate 100 and the second substrate 200 held to the lower chuck 40 and the upper chuck 30 are corrected to align the first substrate 100 and the second substrate 200 (S3).
Then, as shown in
Then, as shown in
A light emitting device panel includes the first substrate 100 and the second substrate 200 laminated with the heated gas injected between them. The light emitting device panel is then unloaded out of the vacuum chamber 50 so that the light emitting device panel is exposed to a room temperature environment. Thus, the mobility of the heated gas is reduced and the initial inner pressure is decreased, thereby stably maintaining the laminated first substrate 100 and second substrate 200. The initial inner pressure “P” of the light emitting device panel with a heated gas injected into it varies with the temperature “T” according to the ideal gas equation PV=nRT since the inner volume “V” of the panel is constant.
For example, the ideal gas equation is P1V1=nR(273+100) when P1 and V1 denote the inner pressure and volume of a light emitting device panel laminated with a nitrogen (N2) gas heated to a temperature of 100° C. Also, the ideal gas equation is P2V2=nR (273+25) when P2 and V2 denote the inner pressure and volume of the light emitting device panel at a room temperature (25° C.) when the nitrogen gas in the panel has been changed from 100° C. to 25° C.
Thus, V1=V2 and P2=0.8P1 since the inner volume of the light emitting device panel is constant. This indicates that the inner pressure of the panel has been reduced by about 20%. For example, the inner pressure between the upper substrate and lower substrate may be about 20 to about 35 torr. Manufacturing a light emitting device panel according to this method increases the reliability and prevents failure of the panel even in high temperature and high humidity environments.
The apparatus for manufacturing light emitting devices according to the embodiment of the present invention does not negatively affect or damage a light emitting device panel even when an inert gas heated to a high temperature is injected into the light emitting device panel. For example, the amount of heat gained by one substrate of the panel at 80° C. is about 1.53 kcal when the specific heat of the substrate is 0.1 kcal/kg ° C., the density is 2.54 g/cm3, and the volume is 109.6 cm3 because the amount of heat required to increase the temperature of the substrate by a specific temperature interval (80° C.−25° C.=55° C.) is the product of the specific heat, mass, and temperature interval of the substrate. The total amount of heat gained by the panel is 3.06 kcal since the panel includes the first substrate 100 and the second substrate 200. A gas of 82 l is required to generate the amount of heat 3.06 kcal at 100° C. since the specific heat of the nitrogen (N2) gas is 0.297 kcal/g ° C. and the molecular mass of nitrogen is 28 g/mol. However, the volume of the general vacuum chamber 50 is 70 l and therefore if the vacuum chamber 50 is filled with the heated gas, the vacuum chamber 50 is then released to the atmospheric pressure so that it is not possible to increase the panel above a specific temperature.
As a result, the apparatus and method for manufacturing light emitting devices according to the embodiment of the present invention does not negatively affect or damage the light emitting device panel even when an inert gas heated to a high temperature is injected into the light emitting device panel.
As is apparent from the above description, the present invention provides an apparatus and method for manufacturing light emitting devices with a variety of features and advantages. For example, a light emitting device panel is laminated after it is filled with a gas heated to a high temperature. Thus, the mobility of the heated gas is reduced while decreasing the initial inner pressure of the panel. The initial inner pressure is decreased when the laminated panel is exposed to room temperature. Thus, failure of the panel is thereby prevented.
It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit or scope of the invention. Thus, it is intended that the present invention cover the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
10-2006-0137643 | Dec 2006 | KR | national |
Number | Name | Date | Kind |
---|---|---|---|
5263888 | Ishihara et al. | Nov 1993 | A |
20030145943 | Lee et al. | Aug 2003 | A1 |
20050167036 | Yokoyama et al. | Aug 2005 | A1 |
20050275791 | Chen et al. | Dec 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
20080157651 A1 | Jul 2008 | US |