The present invention relates to the process design of a light set with semiconductor light emitting components, and more particularly, to a method for manufacturing a light set with surface mounted light emitting components.
In recent years, semiconductor light emitting components have gradually replaced traditional lighting devices. The light emitting diode (LED) has a lot of advantages, such as small volume, quick response time, long service life, not easily attenuated, rigid outer casing, vibration-resistant, ability to emit different colors of light (including invisible light), allowing oriented-design, low voltage, low current, low conversion loss, low thermal radiation, easily mass-producible, environmental friendly, etc.
A conventional LED includes an LED dice encapsulated in a lamp-shaped package. A pair of leads is extended from the LED dice through the package for electrically connecting to external power sources. To use the LED, the pair of leads is respectively soldered to a positive conductor and a negative conductor, so that an electric current can be supplied to the LED dice via the leads for the LED to emit light. Since the lamp-shaped LED has a relatively large volume, a surface mounted LED having relatively small volume has been developed in response to the future trend of small-scale packaging and automated production of LEDs.
While the LED has a lot of advantages, it has the disadvantage of insufficient brightness due to its characteristics of low voltage and low current. Generally, to increase the brightness of the LED, a plurality of LEDs are combined or serially connected to form a light set or a light string for use.
As mentioned above, the leads of conventional semiconductor light emitting components are soldered to respectively connect to conducting wires. However, weld quality is difficult to control. The connection between a semiconductor light emitting component and a conducting wire is affected by the weld quality, and thus semiconductor light emitting components are prone to damage, separation, and other problems due to external impact, resulting in poor reliability.
In addition, when a plurality of semiconductor light emitting components are combined or serially connected, every pair of leads on a plurality of semiconductor light emitting components is soldered one by one onto conducting wires, resulting in a difficult repetitive manufacturing process. When a large number of semiconductor light emitting components are combined, the overall production rate is low. Also, accurate positioning of the semiconductor light emitting components on conducting wires is difficult, resulting in non-uniform spacing and poor quality of the product.
Therefore, the primary objective of the present invention is to provide a method for manufacturing a light set with surface mounted light emitting components, wherein the method makes fabrication quite easy to quickly and accurately manufacture a light set with surface mounted light emitting components, thereby overcoming the problems in production manufacturing of the conventional art.
To fulfill the above objects, the present invention provides a method for manufacturing a light set with surface mounted light emitting components. A rod having a predetermined length and a winding control architecture with corresponding driving spindles are prepared first. The rod is connected to the driving spindles, and then driven to rotate via the driving spindles by a winding machine. During rotation of the rod, at least two conducting wires with insulating layer coated and with a predetermined width between the two conducting wires are wound around a surface of the rod. The width corresponds to a selected lead pitch of the surface mounted light emitting components. The insulating layer of each conducting wire is then ground along an axial direction of the rod to expose the conductor of each conducting wire to form contact-pad areas. A conductive paste is applied to each contact-pad area, and the surface mounted light emitting components are straddled thereon. Each lead of the surface mounted light emitting components is respectively positioned corresponding to the contact-pad areas, and is electrically connected to the conductors by the conductive paste.
In a preferred embodiment of the present invention, the conducting wires are wound around the surface of the rod in a predetermined winding pitch. After the surface mounted light emitting components are straddled on contact-pad areas of the adjacent conducting wires, electrical conductivity tests are conducted to the surface mounted light emitting component and the conducting wires. Then, the contact-pad areas and the surface mounted light emitting component are then covered with a package and baked to cure the package. In an embodiment, the rod is cylindrical, and the surface of the rod is formed with two spiral grooves for the winding of the conducting wires. The conducting wires are enamel-insulated wires and the conductive paste used is silver paste. The surface mounted light emitting components are surface mounted light emitting diodes (LEDs).
The technique used by the present invention of grinding the conducting wires all together after being wound on a winding control architecture not only reduces manufacturing time and increases efficiency, but can also control the positions of the exposed conductors. By adjusting the winding pitch, it allows each surface mounted light emitting component to be equally spaced on the conducting wires of the end product to achieve accurate positioning.
Furthermore, there is no need for the leads of the surface mounted light emitting components to be soldered one by one. Instead, the leads are directly straddled on and between corresponding contact-pad areas, and are electrically connected to the conductors of the conducting wires by the conductive paste. Thus, the fabrication process is easy, convenient, and effectively increases the efficiency of production.
Moreover, the contact-pad areas provide positioning for the surface mounted light emitting components, allowing the contact area between the surface mounted light emitting components and the conducting wires to be larger. The surface is further covered by a package providing stability in the overall structure, making it less prone to damage and separation due to external impact, thereby improving reliability.
The structure and the technical means adopted by the present invention to achieve the above and other objects can be best understood by referring to the following detailed description of the preferred embodiments and the accompanying drawings, wherein:
Please refer to
Please refer to
Please refer to
In the present embodiment, the shape of the rod S is cylindrical, but it may also be other shapes, such as elliptic. The rod S has an axial direction S0, and at least two spiral grooves S21, S22 are formed on the surface S1 of the rod S for the conducting wires 1, 2 to wind around in order to maintain an identical width D when the conducting wires 1, 2 are wound around the surface S1 of the rod S.
Please refer to
In the present embodiment, the conducting wires 1, 2 are enamel-insulated wires and the conductors 12, 22 are copper conductors, and the insulating layers 11, 21 being an insulating enamel varnish coated on the outer side of the copper conductors. Of course, the conducting wires 1, 2 are not necessarily limited to enamel-insulated wires, but can be other types of wires, such as PVC electronic wires, PE wires, cables, etc., and can be multiple wires enclosed together as a power cord. The conducting wires 1, 2 are wound around the surface S1 of the rod S in a predetermined winding pitch P. The winding pitch P affects the distance between contact-pad areas on the same conducting wire. When the winding pitch P is fixed, the space between processed contact-pad areas is identical. The winding pitch P is the distance along the axial direction S0 for the conducting wires to wind around the rod S for one cycle in the present embodiment.
Please refer to
In the present embodiment, the surface mounted light emitting component 4 is a surface mounted light emitting diode (LED) comprising a pair of leads 41, 42 having a predetermined lead pitch W, wherein the lead pitch W and the width D of the conducting wires 1, 2 are the same. During the electrical conductivity tests, the conducting wires 1, 2 are respectively connected to a positive and negative power source. The light emitted from the surface mounted light emitting component 4 is used to determine whether or not the surface mounted light emitting component 4 is electrically connected. Of course, there are various types of surface mounted light emitting components with different specifications. Some of the surface mounted light emitting components are designed to have three or more leads. In this case, the number of conducting wires must be adjusted to meet the number of leads, and the width of the conducting wires is adjusted corresponding to the lead pitch, thereby allowing leads to be respectively positioned corresponding to contact-pad areas when surface mounted light emitting components are straddled on and among conducting wires to become electrically connected.
The conductive paste 3 used in the present embodiment is silver paste. The conductive paste 3 has to be dried at a high temperature in an oven to allow the surface mounted light emitting component 4 to be securely bonded to the conducting wires 1, 2 (Step 108), thereby allowing the surface mounted light emitting component 4 and the conductors 12, 22 of the conducting wires 1, 2 to be in contact and electrically conductive by the conductive paste 3. The baking time is about 1.5 hours at 150° C. Not only does the conductive paste 3 facilitate conductivity, but also increases the strength of the bond between the surface mounted light emitting component 4 and the conducting wires 1, 2 to ensure stable and fixed straddling of the surface mounted light emitting component 4 on the contact-pad areas 13, 23 of the conducting wires 1, 2. Since there is no need to solder any leads, the overall fabrication process is easy, convenient, and without difficulties in production.
Please refer to
Please refer to
Although the present invention has been described with reference to the preferred embodiments thereof, as well as the best mode for carrying out the present invention, it is apparent to those skilled in the art that a variety of modifications and changes may be made without departing from the scope of the present invention which is intended to be defined by the appended claims.