Method for manufacturing liquid-trapping bag for use in vacuum packaging

Abstract
A method for manufacturing a bag for use in vacuum packaging comprises forming a first panel having a plurality of baffles for evacuating air and/or other gases from inside the bag using a suction source, while preventing liquids from being drawn into the suction source, and a second panel. Each panel comprises a gas-impermeable base layer and a heat-sealable inner layer molded from melt-extruded resin. The first panel is overlapped with the second panel, and three of four edges of the panels are heated such that the inner layers bond at the heated edges. This description is not intended to be a complete description of, or limit the scope of, the invention. Other features, aspects, and objects of the invention can be obtained from a review of the specification, the figures, and the claims.
Description
FIELD OF THE INVENTION

The present invention relates to bags for use in vacuum packaging and methods and devices for manufacturing bags for use in vacuum packaging.


BACKGROUND

Methods and devices for preserving perishable foods such as fish and meats, processed foods, prepared meals, and left-overs, and non-perishable items are widely known, and widely varied. Foods are perishable because organisms such as bacteria, fungus and mold grow over time after a food container is opened and the food is left exposed to the atmosphere. Most methods and devices preserve food by protecting food from organism-filled air. A common method and device includes placing food into a gas-impermeable plastic bag, evacuating the air from the bag using suction from a vacuum pump or other suction source, and tightly sealing the bag.


A bag for use in vacuum packaging can consist of a first panel and second panel, each panel consisting of a single layer of heat-sealable, plastic-based film (for example, polyethylene). The panels are sealed together along a substantial portion of the periphery of the panels by heat-sealing techniques so as to form an envelope. Perishable products, such as spoilable food, or other products are packed into the envelope via the unsealed portion through which air is subsequently evacuated. After perishable products are packed into the bag and air is evacuated from the inside of the bag, the unsealed portion is heated and pressed such that the panels adhere to each other, sealing the bag.


U.S. Pat. No. 2,778,173, incorporated herein by reference, discloses a method for improving the evacuation of air from the bag by forming channels in at least one of the panels with the aid of embossing techniques. Air escapes from the bag along the channels during evacuation. The embossing forms a pattern of protuberances on at least one of the panels. The protuberances can be discrete pyramids, hemispheres, etc., and are formed by pressing a panel using heated female and male dies. The first panel is overlaid on the second panel such that the protuberances from one panel face the opposite panel. The contacting peripheral edges of the panels are sealed to each other to form an envelope having an inlet at an unsealed portion of the periphery. The perishable or other products are packed into the envelope through the inlet, and the inlet is sealed. Thereafter, an opening is pierced in a part of the panel material that communicates with the channels, air is removed from the interior of the envelope through the channels and opening, and the opening is sealed. This type of bag requires two additional sealing steps after the perishable or other product is packed into the envelope. One further problem is that embossing creates impressions on the plastic such that indentations are formed on the opposite side of the panel


To avoid additional sealing steps, a vacuum bag is formed having a first panel and a second panel consisting of laminated films. Each panel comprises a heat-sealable inner layer, a gas-impermeable outer layer, and optionally, one or more intermediate layers. Such a bag is described in U.S. Pat. No. Re. 34,929, incorporated herein by reference. At least one film from at least one panel is embossed using an embossing mold to form protuberances and charnels defined by the space between protuberances, so that air is readily evacuated from the vacuum bag.


U.S. Pat. No. 5,554,423, incorporated herein by reference, discloses still another bag usable in vacuum packaging. The bag consists of a first and second panel, each panel consisting of a gas-impermeable outer layer and a heat-sealable inner layer. A plurality of heat-sealable strand elements are heat bonded at regular intervals to the inner layer of either the first panel or the second panel. The spaces between strand elements act as channels for the evacuation of air. The strand elements are extruded from an extrusion head and heat bonded to the heat-sealable layer by use of pressure rolls. Separate equipment is required for producing strand elements, and a procedure of heat bonding a plurality of strand elements at regular intervals to the heat-sealable inner layer is complicated. Also, various shapes of pattern are hard to form using this process.





BRIEF DESCRIPTION OF THE FIGURES

Further details of embodiments of the present invention are explained with the help of the attached drawings in which:



FIG. 1A is a perspective view of a method for manufacturing a vacuum bag in accordance with one embodiment of the present invention;



FIG. 1B is a side view of the method shown in FIG. 1A illustrating the embossing method used in an embodiment of the present invention;



FIG. 1C is a close-up view of a portion of FIG. 1B;



FIG. 2A is a top view of a partial portion of a first panel overlapping a partial portion of a second panel in accordance with one embodiment of the present invention;



FIG. 2B is a cross-section view through line 2B-2B of FIG. 2A;



FIG. 3A-3E are plan views of exemplary patterns on a panel in accordance with embodiments of the present invention, manufactured by the process shown in FIG. 1; and



FIG. 4 is a perspective view of a vacuum bag in accordance with one embodiment of the present invention.





DETAILED DESCRIPTION


FIGS. 1A-1C illustrate one embodiment of a method for manufacturing a vacuum bag in accordance with the present invention. The vacuum bag comprises a first panel and a second panel, wherein each panel comprises a gas-impermeable base layer 108 and a heat-sealable inner layer 106 with at least one panel having liquid flow obstructing protuberances and/or channels. A laminating roll 102 and a cooling roll 104 are arranged so that melt-extruded resin can be introduced between the rolls and cooled to form the heat-sealable inner layer 106 and to laminate the formed inner layer 106 to the gas-impermeable base layer 108. As illustrated in FIG. 1C, a gap between the laminating roll 102 and the cooling roll 104 can be controlled according to specifications (for example, thickness) of a panel for use in vacuum packaging. The temperature of the cooling roll 104 is maintained in a range such that the melt-extruded resin can be sufficiently cooled to form a desired pattern. For example, a temperature range of about −15° C. to about −10° C. can be sufficient to properly form the desired pattern. The temperature range of the cooling roll 104 can vary according to the composition of the resin, the composition of the gas-impermeable base layer 108, environmental conditions, etc. and can require calibration. Also, the cooling roll 104 can be sized to have a larger diameter than the laminating roll 102, thereby bringing the melt-extruded resin into contact with more cooled surface area. For example, the diameter of the cooling roll 104 can be about one-and-a-half to about three times as large (or more) as that of the laminating roll 102.


The heat-sealable inner layer 106 typically comprises a thermoplastic resin. For example, the resin can be comprised of polyethylene (PE) suitable for preserving foods and harmless to a human body. A vacuum bag can be manufactured by overlapping two panels such that the heat-sealable inner layers 106 of the two panels are brought into contact and heat is applied to a portion of the periphery of the panels to form an envelope. The thermoplastic resin can be chosen so that the two panels strongly bond to each other when sufficient heat is applied.


The gas-impermeable base layer 108 is fed to the gap between the cooling roll 104 and the laminating roll 102 by a feeding means (not shown). The gas-impermeable base layer can be comprised of polyester, polyamide, ethylene vinyl alcohol (EVOH), nylon, or other material having similar properties, that is capable of being heated and capable of being used in this manufacturing process. The gas-impermeable base layer 108 can consist of one layer, or two or more layers. When employing a multilayer-structured base layer, it should be understood that a total thickness thereof is also adjusted within the allowable range for the total gas-impermeable base layer 108.


An extruder 110 is positioned in such a way that the melt-extruded resin is layered on the gas-impermeable base layer 108 by feeding the melt-extruded resin to a nip between the cooling roll 104 and the gas-impermeable base layer 108. The resin is fed through a nozzle 112 of the extruder 110. The temperature of the melt-extruded resin is dependent on the type of resin used, and can typically range from about 200° C. to about 250° C. The amount of resin extruded into the laminating unit 100 is dependent on the desired thickness of the heat-sealable inner layer 106.


A pattern fabricated on the circumferential surface of the cooling roll 104 in accordance with one embodiment of the present invention can include cavities (and/or protuberances) defining a plurality of discrete channels having a baffled structure. The resin extruded from the nozzle 112 is pressed between the cooling roll 104 and the gas-impermeable base layer 108 and flows into the cavities of the cooling roll 104. The resin quickly cools and solidifies in the desired pattern while adhering to the gas-impermeable base layer 108, thereby forming the heat-sealable inner layer 106 of the panel. The heat-sealable inner layer 106 can be formed while the resin is sufficiently heated to allow the resin to flow, thereby molding the resin, unlike other methods adopting a post-embossing treatment where the heat-sealable inner layer is drawn by a die or embossed between male and female components.


The thickness of each protuberance formed on the heat-sealable inner layer 106 of a panel can be determined by the depth of the cavities of the cooling roll 104, and the width of the channel can be determined by the interval between the cavities. Thus, the shape, width, and thickness of the channels for the evacuation of air and/or other gases can be controlled by changing the specifications for the cavities of the cooling roll 104. FIGS. 2A and 2B illustrate a cross-section (along line 2B-2B) of two panels in accordance with one embodiment of the present invention (the thickness of the panels are exaggerated relative to the width of the channel walls and baffles). The heat-sealable inner layer 106 can range from preferably 0.5-6.0 mils in thickness at the channels 224, and preferably 1.0-12.0 mils in thickness at the protuberances 226,228, while the gas-impermeable base layer 108 can range from about preferably 0.5-8.0 mils in thickness. The dimensions of the inner layer and the base layer are set forth to illustrate, but are not to be construed to limit the dimensions of the inner layer and the base layer.



FIG. 3A is a plan view of a pattern 320 formed on a panel by the cooling roll 104 for use in a vacuum bag, in which the heat-sealable inner layer 106 is molded in such a way that protuberances form the plurality of channels 224 having channels walls 226 and baffles 228. The baffles 228 can be arranged in a herringbone pattern at angles such that air and/or other gases 340 (shown schematically) can be drawn around the baffles 228 by suction and evacuated from the vacuum bag, while heavier liquid particles 342 can be trapped between the channel walls 226 and the baffles 228. Angles formed by the intersection of baffles 228 and channel walls 226, and gaps between adjacent baffles 228 can be defined when producing the cooling roll 104 to suit the liquid intended to be trapped. Different arrangements of the baffles 228 relative to the chamber walls 226, and relative to other baffles 228 can be multi-fold (shaped to define liquid-trapping vessels), and can be optimized to improve evacuation of the air and/or other gases 340, while effectively preventing liquids 342 from being drawn out of the vacuum bag. For example, as shown in FIG. 3A the baffles 228 can be arranged such that an approach angle for passing through the channel opening between the baffles 228 is severe and that vessels formed by the baffles 228 are relatively deep, thereby retarding liquid flow by deflecting liquid 342 into the vessels and trapping a significant amount of liquid 342.


As indicated above, one of ordinary skill in the art can appreciate the multitude of different baffle arrangements for retarding the evacuation of liquid 342 relative to the evacuation of air and/or other gases 340. As shown in FIG. 3B, in other embodiments a pattern 320 fabricated on the circumferential surface of the cooling roll 104, and thereafter the panel, can mold protuberances forming a plurality of channels 224 defined by “V”-shaped baffles 228, eliminating the need for molding channel walls. In still other embodiments, the channel walls 226 can extend substantially the length of the panel with only a portion of the length of the channels near an evacuation opening having baffles 228.


As shown in FIG. 3C, in other embodiments a pattern 320 fabricated on the circumferential surface of the cooling roll 104, and thereafter the panel, can mold protuberances forming a plurality of channels 224 having channels walls 226 and baffles 228, wherein each baffle 228 extends across a substantial portion of the width of the channel 224, thereby defining a path between the baffle 228 and the channel wall 226 for the air and/or other gases 340 to be drawn. The baffles 228 can alternatively be parabolic or rounded, as shown in FIG. 3D, to form pockets for collecting liquid particles 342.



FIG. 3E illustrates still another embodiment of a pattern 320 fabricated on the circumferential surface of the cooling roll 104, and thereafter the panel, that can include parabolically-shaped or “U”-shaped baffles 228 arranged like fish-scales either along the length of the panel, or a portion of the panel to capture liquid particles 342. The U-shaped baffles 228 can also include slits 330 in the troughs of the U-shaped baffles 228 small enough to improve the flow of air and/or other gases 340 while retarding an amount of liquid particles 342. In other embodiments, the baffles 228 can be more or less parabolic. One of ordinary skill in the art can appreciate the multitude of different baffle shapes for retarding the evacuation of liquid relative to the evacuation of air or other gases.


It is understood that the trapping of liquid in baffles or vessels formed in the bag is advantageous as this structure retards and prevents liquids from being drawn into the vacuum pump or suction device of a vacuum sealing tool such as disclosed in U.S. Pat. No. 4,941,310, which is incorporated herein by reference.



FIG. 4 illustrates a bag for use in vacuum packaging in accordance with one embodiment of the present invention. The vacuum bag 450 comprises a first panel 452 and a second panel 454 overlapping each other. Channels 224 are formed on at least one of the panels 452,454 in accordance with an embodiment described above. The heat-sealable inner layer 106 and the gas-impermeable base layer 108 of the first and second panels 452,454 are typically made of the same material respectively, but can alternatively be made of different materials that exhibit heat-sealability and gas-impermeability respectively. As described above, the resin-formed layer 106 is used as an inner layer and the gas-impermeable base layer 108 is used as an outer layer. The lower, left, and right edges of the first and the second panel 452,454 are bonded to each other by heating, so as to form an envelope for receiving a perishable or other product to be vacuum packaged. Once a perishable or other product is placed in the vacuum bag 450, air and/or other gases can be evacuated from the bag 450, for example by a vacuum sealing machine as described in the above referenced U.S. Pat. No. 4,941,310, which is incorporated herein by reference. Once the air and/or other gases are evacuated to the satisfaction of the user, the inlet can be sealed by applying heat, thereby activating the heat-sealable inner layers 106 and bonding them together where contacted by the heat.


The foregoing description of preferred embodiments of the present invention has been provided for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. It is to be understood that many modifications and variations will be apparent to the practitioner skilled in the art. The embodiments were chosen and described in order to best explain the principles of the invention and its practical application, thereby enabling others skilled in the art to understand the invention for various embodiments and with various modifications that are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the following claims and their equivalence.

Claims
  • 1. A method of manufacturing a bag adapted to receive an article, comprising: rotating a first roller having a plurality of recesses;rotating a second roller adjacent to the first roller, said second roller can feed a first film adjacent to the first roller;applying a molten material between the first roller and the film; said molten material filling the recesses of the first roller, andsaid molten material and film moving between the first roller and the second roller forming a first panel with a plurality of protuberances defining a plurality of baffles and a plurality of channels, each of the plurality of baffles forming a vessel configured for trapping liquid therein and the plurality of channels defining a plurality of non-linear channel paths between the baffles, the non-linear channel paths having an approach angle to the baffles to deflect liquid into the vesselsforming a second panel; andmating the first panel to the second panel in order to form a bag.
  • 2. The method of claim 1 including: using a gas impermeable material for the film; and using a heat sealable material for the molten material.
  • 3. The method of claim 1, wherein said first roller includes a peripheral surface having a first portion including the plurality of recesses for defining a plurality of protuberances and a second portion without a plurality of recesses.
  • 4. The method of claim 1 including forming the protuberances in part with walls that run parallel to the length of the film and in part with walls that run across the length of the firm.
  • 5. The method of claim 1 including forming the protuberances from the plurality of recesses with some of the plurality of recesses running parallel to the length of the film and some of the plurality of recesses running across the length of the firm.
  • 6. The method of claim 1 including forming the protuberances from the plurality of recesses with some of the plurality of recesses running in about the direction of rotation of a peripheral surface of the first roller and some of the recesses running in about a direction across the direction of rotation of the peripheral surface.
  • 7. The method of claim 1, wherein forming the plurality of protuberances define U shaped baffles.
  • 8. The method of claim 1, wherein gas flows through the non-linear channel paths between the baffles.
  • 9. The method of claim 1, wherein forming the plurality of baffles forms V shaped vessels.
  • 10. The method of claim 1, wherein forming the plurality of baffles forms L shaped vessels.
  • 11. A method for manufacturing a bag adapted to receive an article, comprising: feeding a first gas-impermeable film to a first nip between a first cooling roll and a first laminating roll, the first cooling roll having a plurality of cavities for forming a structure;extruding molten resin to the first nip;pressing the molten resin between the first cooling roll and the first gas-impermeable film such that the molten resin fills the plurality of cavities exposed to the first nip;cooling the resin such that the resin forms the structure and adheres to the gas impermeable film, forming a first panel;wherein the structure comprises a plurality of protuberances defining a plurality of baffles and a plurality of channels, each of the plurality of baffles forming a vessel configured for trapping liquid therein and the plurality of channels defining a plurality of non-linear channel paths between the baffles, the non-linear channel paths having an approach angle to the baffles to deflect liquid into the vessels;feeding a second gas-impermeable film to a second nip between a second cooling roll and a second laminating roll;extruding molten resin to the second nip;pressing the molten resin between the second cooling roll and the second gas-impermeable film;cooling the molten resin such that a second inner layer is formed;wherein the second inner layer adheres to the second gas-impermeable film, thereby forming a second panel;overlapping the first panel with the second panel; andapplying heat to a first, second, and third side of the first and second panels such that the first panel and the second panel form an envelope.
  • 12. A method for manufacturing a bag adapted to receive an article, comprising: rotating a first cooling roll at a first rate, the first cooling roll including one or both of a plurality of cavities and a plurality of protuberances for forming a structure having a plurality of channels defined at least partially by a plurality of baffles, each of the plurality of baffles forming a vessel configured for trapping liquid therein and the plurality of channels defining a plurality of non-linear channel paths between the baffles, the non-linear channel paths having an approach angle to the baffles to deflect liquid into the vessels;rotating a first laminating roll at a second rate;introducing a first gas-impermeable film having at least one layer to a first nip between the first cooling roll and the first laminating roll;extruding molten resin to the first nip;pressing the molten resin between the first cooling roll and the first gas-impermeable film such that the molten resin fills the plurality of cavities exposed to the first nip;cooling the molten resin such that a first inner layer is formed;wherein the first inner layer comprises the structure;wherein the first inner layer adheres to the first gas-impermeable film, thereby forming a first panel;rotating a second cooling roll at a third rate;rotating a second laminating roll at a fourth rate;introducing a second gas-impermeable film having at least one layer to a second nip between the second cooling roll and the second laminating roll;extruding molten resin to the second nip;pressing the molten resin between the second cooling roll and the second gas-impermeable film;cooling the molten resin such that a second inner layer is formed;wherein the second inner layer adheres to the second gas-impermeable film, thereby forming a second panel;overlapping the first panel with the second panel; andapplying heat to a portion of a periphery the first and second panels such that the first panel and the second panel form an envelope.
  • 13. The method of claim 12, wherein the second rate is an integer multiple of the first rate and the fourth rate is an integer multiple of the third rate.
  • 14. The method of claim 12, wherein the first gas-impermeable film and the second gas-impermeable film comprise at least one layer.
  • 15. The method of claim 14, wherein the at least one layer is one of polyester, polyamide, ethylene vinyl alcohol, and nylon.
  • 16. The method of claim 12, wherein the molten resin is polyethylene.
  • 17. The method of claim 12, wherein a thickness of the first inner layer is determined by the size of the first nip and the thickness of the second inner layer is determined by the size of the second nip.
PRIORITY CLAIM

This application is a continuation of U.S. application Ser. No. 10/794,349 filed on Mar. 4, 2004 now abandoned which claims priority to U.S. Provisional Application 60/452,138 filed on March 5, 2003. The entire disclosure of each of the aforementioned patent applications are incorporated herein by reference. This U.S. Patent Application incorporates by reference all of the following co-pending applications: U.S. Provisional Patent Application No. 60/452,168, entitled “LIQUID-TRAPPING BAG FOR USE IN VACUUM PACKAGING,” by Henry Wu, et al., filed Mar. 5, 2003; U.S. Provisional Patent Application No. 60/452,172, entitled “SEALABLE BAG HAVING AN INTEGRATED TRAY FOR USE IN VACUUM PACKAGING,” by Henry Wu, et al., filed Mar. 5, 2003; U.S. Provisional Patent Application No. 60/452,171, entitled “METHOD FOR MANUFACTURING A SEALABLE BAG HAVING AN INTEGRATED TRAY FOR USE IN VACUUM PACKAGING,” by Henry Wu, et al., filed Mar. 5, 2003; U.S. Provisional Patent Application No. 60/451,954, entitled “SEALABLE BAG HAVING AN INDICIA FOR USE IN VACUUM PACKAGING,” by Henry Wu, et al., filed Mar. 5, 2003; U.S. Provisional Patent Application No. 60/451,948, entitled “METHOD FOR MANUFACTURING A SEALABLE BAG HAVING AN INDICIA FOR USE IN VACUUM PACKAGING,” by Henry Wu, et al., filed Mar. 5, 2003; U.S. Provisional Patent Application No. 60/452,142, entitled “SEALABLE BAG HAVING AN INTEGRATED ZIPPER FOR USE IN VACUUM PACKAGING,” by Henry Wu, et al., filed Mar. 5, 2003; U.S. Provisional Patent Application No. 60/452,021, entitled “METHOD FOR MANUFACTURING A SEALABLE BAG HAVING AN INTEGRATED ZIPPER FOR USE IN VACUUM PACKAGING,” by Henry Wu, et al., filed Mar. 5, 2003; U.S. Provisional Patent Application No. 60/451,955, entitled “SEALABLE BAG HAVING AN INTEGRATED VALVE STRUCTURE FOR USE IN VACUUM PACKAGING,” by Henry Wu, et al., filed Mar. 5, 2003; U.S. Provisional Patent Application No. 60/451,956, entitled “METHOD FOR MANUFACTURING A SEALABLE BAG HAVING AN INTEGRATED VALVE STRUCTURE FOR USE IN VACUUM PACKAGING,” by Henry Wu, et al., filed Mar. 5, 2003; U.S. Provisional Patent Application No. 60/452,157, entitled “SEALABLE BAG HAVING AN INTEGRATED TIMER/SENSOR FOR USE IN VACUUM PACKAGING,” by Henry Wu, et al., filed Mar. 5, 2003; U.S. Provisional Patent Application No. 60/452,139, entitled “METHOD FOR MANUFACTURING A SEALABLE BAG HAVING AN INTEGRATED TIMER/SENSOR FOR USE IN VACUUM PACKAGING,” by Henry Wu, et al., filed Mar. 5, 2003; U.S. patent application Ser. No. 10/169,485, entitled “METHOD FOR PREPARING AIR CHANNEL EQUIPPED FILM FOR USE IN VACUUM PACKAGE”, filed Jun. 26, 2002; U.S. patent application Ser. No. 10/795,149, entitled “LIQUID-TRAPPING BAG FOR USE IN VACUUM PACKAGING,” filed concurrently; U.S. patent application Ser. No. 10/794,951, entitled “SEALABLE BAG HAVING AN INTEGRATED TRAY FOR USE IN VACUUM PACKAGING,” filed concurrently; U.S. patent application Ser. No. 10/794,369, entitled “METHOD FOR MANUFACTURING A SEALABLE BAG HAVING AN INTEGRATED TRAY FOR USE IN VACUUM PACKAGING,” filed concurrently. U.S. patent application Ser. No. 10/794,488, entitled “SEALABLE BAG HAVING AN INDICIA FOR USE IN VACUUM PACKAGING,” filed concurrently; U.S. patent application Ser. No. 10/794,351, entitled “METHOD FOR MANUFACTURING A SEALABLE BAG HAVING AN INDICIA FOR USE IN VACUUM PACKAGING,” filed concurrently; U.S. patent application Ser. No. 10/795,048, entitled, “SEALABLE BAG HAVING AN INTEGRATED ZIPPER FOR USE IN VACUUM PACKAGING,” filed concurrently; U.S. patent application Ser. No. 10/794,487, entitled, “METHOD FOR MANUFACTURING A SEALABLE BAG HAVING AN INTEGRATED ZIPPER FOR USE IN VACUUM PACKAGING,” filed concurrently; U.S. patent application Ser. No. 10/794,354, entitled, “SEALABLE BAG HAVING AN INTEGRATED VALVE STRUCTURE FOR USE IN VACUUM PACKAGING,” filed concurrently; U.S. patent application Ser. No. 10/794,952, entitled, “METHOD FOR MANUFACTURING A SEALABLE BAG HAVING AN INTEGRATED VALVE STRUCTURE FOR USE IN VACUUM PACKAGING,” filed concurrently; U.S. patent application Ser. No. 10/794,368, entitled, “SEALABLE BAG HAVING AN INTEGRATED TIMER/SENSOR FOR USE IN VACUUM PACKAGING,” filed concurrently; and U.S. patent application Ser. No. 10/794,373, entitled, “METHOD FOR MANUFACTURING A SEALABLE BAG HAVING AN INTEGRATED TIMER/SENSOR FOR USE IN VACUUM PACKAGING,” filed concurrently.

US Referenced Citations (236)
Number Name Date Kind
274447 Kennish Mar 1883 A
1938593 Jarrier Dec 1933 A
2085766 Potdevin et al. Jul 1937 A
2105376 Scott Jan 1938 A
2247566 Walton Jul 1941 A
2265075 Knuetter Dec 1941 A
2387812 Sonnebom et al. Oct 1945 A
2429482 Munters Oct 1947 A
2480316 Blair et al. Aug 1949 A
2607712 Sturken Aug 1952 A
2609314 Engel et al. Sep 1952 A
2633442 Caldwell Mar 1953 A
2642372 Chittick Jun 1953 A
2670501 Michiels Mar 1954 A
2690206 Mueller Sep 1954 A
2695741 Haley Nov 1954 A
2759866 Seymour Aug 1956 A
2772712 Post Dec 1956 A
2776452 Chavannes Jan 1957 A
2778171 Taunton Jan 1957 A
2778173 Taunton Jan 1957 A
2789609 Post Apr 1957 A
2821338 Metzger Jan 1958 A
2856323 Gordon Oct 1958 A
2858247 De Swart Oct 1958 A
2913030 Fisher Nov 1959 A
2916411 Villoresi Dec 1959 A
2960144 Graf Nov 1960 A
3026231 Chavannes Mar 1962 A
3060985 Vance et al. Oct 1962 A
3077262 Gaste Feb 1963 A
3077428 Heuser et al. Feb 1963 A
3098563 Skees Jul 1963 A
3102676 Danelli et al. Sep 1963 A
3113715 Pangrac Dec 1963 A
3135411 Osborne Jun 1964 A
3141221 Faulls, Jr. Jul 1964 A
3142599 Chavannes Jul 1964 A
3149772 Olsson Sep 1964 A
3160323 Weisberg Dec 1964 A
3224574 McConnell et al. Dec 1965 A
3237844 Hughes Mar 1966 A
3251463 Bodet May 1966 A
3325084 Ausnit Jun 1967 A
3334805 Halbach Aug 1967 A
3381887 Lowry May 1968 A
3411698 Reynolds Nov 1968 A
3423231 Lutzmann Jan 1969 A
3516217 Gildersleeve Jun 1970 A
3533548 Taterka Oct 1970 A
3565147 Ausnit Feb 1971 A
3575781 Pezely Apr 1971 A
3595467 Goglio Jul 1971 A
3595722 Dawbarn Jul 1971 A
3595740 Gerow Jul 1971 A
3600267 McFedries, Jr. Aug 1971 A
3661677 Wang May 1972 A
3785111 Pike Jan 1974 A
3799427 Gogllo Mar 1974 A
3809217 Harrison May 1974 A
3833166 Murray Sep 1974 A
3895153 Johnston et al. Jul 1975 A
3908070 Marzolf Sep 1975 A
3937395 Lawes Feb 1976 A
3958391 Kujubu May 1976 A
3958693 Greene May 1976 A
3980226 Franz Sep 1976 A
3998499 Chiarotto Dec 1976 A
4018253 Kaufman Apr 1977 A
4066167 Hanna et al. Jan 1978 A
4098404 Markert Jul 1978 A
4104404 Bieler et al. Aug 1978 A
4105491 Haase et al. Aug 1978 A
4155453 Ono May 1979 A
4164111 Di Bernardo Aug 1979 A
4179862 Landolt Dec 1979 A
4186786 Kirkpatrick Feb 1980 A
4212337 Kamp Jul 1980 A
4215725 Callet et al. Aug 1980 A
4295566 Vincek Oct 1981 A
4310118 Kisida et al. Jan 1982 A
4340558 Hendrickson Jul 1982 A
4370187 Katagiri et al. Jan 1983 A
4372921 Sanderson et al. Feb 1983 A
4449243 Platel May 1984 A
4486923 Briggs Dec 1984 A
4532652 Herrington Jul 1985 A
4551379 Kerr Nov 1985 A
4569712 Shibano et al. Feb 1986 A
4575990 Von Bismarck Mar 1986 A
4576283 Fafournoux Mar 1986 A
4576285 Goglio Mar 1986 A
4579756 Edgel Apr 1986 A
4583347 Nielsen Apr 1986 A
4658434 Murray Apr 1987 A
4669124 Kimura May 1987 A
4672684 Barnes et al. Jun 1987 A
4683702 Vis Aug 1987 A
4705174 Goglio Nov 1987 A
4712574 Perrott Dec 1987 A
4756422 Kristen Jul 1988 A
4756629 Tilman et al. Jul 1988 A
4778282 Borchardt et al. Oct 1988 A
4786285 Jambor Nov 1988 A
4812056 Zieke Mar 1989 A
4834554 Stetler, Jr. et al. May 1989 A
4841603 Ragni Jun 1989 A
4871264 Robbins, III et al. Oct 1989 A
4877334 Cope Oct 1989 A
4887912 Stumpf Dec 1989 A
4890637 Lamparter Jan 1990 A
4892414 Ausnit Jan 1990 A
4903718 Sullivan Feb 1990 A
4906108 Herrington et al. Mar 1990 A
4913561 Beer Apr 1990 A
4917506 Scheibner Apr 1990 A
4917844 Komai et al. Apr 1990 A
4941310 Kristen Jul 1990 A
4953708 Beer et al. Sep 1990 A
4973171 Bullard Nov 1990 A
5006056 Mainstone et al. Apr 1991 A
5040904 Cornwell Aug 1991 A
5048269 Denl Sep 1991 A
D320549 McKellar et al. Oct 1991 S
5053091 Giljam et al. Oct 1991 A
5063639 Boeckmann et al. Nov 1991 A
5080155 Crozier Jan 1992 A
5097956 Davis Mar 1992 A
5098497 Brinley Mar 1992 A
5106688 Bradfute et al. Apr 1992 A
5111838 Langston May 1992 A
5116444 Fox May 1992 A
5121590 Scanlan Jun 1992 A
5142970 ErkenBrack Sep 1992 A
5203458 Cornwell Apr 1993 A
5209264 Koyanagi May 1993 A
D338399 Conte, Jr. Aug 1993 S
5240112 Newburger Aug 1993 A
5242516 Custer et al. Sep 1993 A
5246114 Underwood Sep 1993 A
5252379 Kuribayashi et al. Oct 1993 A
5332095 Wu Jul 1994 A
5333736 Kawamura Aug 1994 A
5339959 Cornwell Aug 1994 A
5352323 Chi Oct 1994 A
5362351 Karszes Nov 1994 A
5368394 Scott et al. Nov 1994 A
5371925 Sawatsky Dec 1994 A
5373965 Halm et al. Dec 1994 A
5397182 Gaible et al. Mar 1995 A
5402906 Brown et al. Apr 1995 A
RE34929 Kristen May 1995 E
D360578 Dees Jul 1995 S
5445275 Curley et al. Aug 1995 A
5450963 Carson Sep 1995 A
5480030 Sweeney et al. Jan 1996 A
5526843 Wolf et al. Jun 1996 A
5540500 Tanaka Jul 1996 A
5542902 Richison et al. Aug 1996 A
5544752 Cox Aug 1996 A
5549944 Abate Aug 1996 A
5551213 Koelsch et al. Sep 1996 A
5554423 Abate Sep 1996 A
5584409 Chemberlen Dec 1996 A
5592697 Young Jan 1997 A
5620098 Boos et al. Apr 1997 A
5638664 Levsen et al. Jun 1997 A
5655273 Tomic et al. Aug 1997 A
5656209 Benz et al. Aug 1997 A
5665456 Kannankeril et al. Sep 1997 A
5689866 Kasai et al. Nov 1997 A
5699936 Sakamoto Dec 1997 A
5701996 Goto et al. Dec 1997 A
5709467 Galliano, II Jan 1998 A
5735395 Lo Apr 1998 A
5749493 Boone et al. May 1998 A
5765608 Kristen Jun 1998 A
5772034 Lin Jun 1998 A
5812188 Adair Sep 1998 A
5829884 Yeager Nov 1998 A
5839582 Strong et al. Nov 1998 A
5873217 Smith Feb 1999 A
5874155 Gehrke et al. Feb 1999 A
5881881 Carrington Mar 1999 A
5893822 Deni et al. Apr 1999 A
5898113 Vercere Apr 1999 A
5908245 Bost et al. Jun 1999 A
5915596 Credle, Jr. Jun 1999 A
5927336 Tanaka et al. Jul 1999 A
5928762 Aizawa et al. Jul 1999 A
D413258 Voller Aug 1999 S
5931189 Sweeney et al. Aug 1999 A
5941421 Overman et al. Aug 1999 A
5941643 Linkiewicz Aug 1999 A
5954196 Lin Sep 1999 A
5957831 Adair Sep 1999 A
5971613 Bell Oct 1999 A
5996800 Pratt Dec 1999 A
6021624 Richison et al. Feb 2000 A
6023914 Richison et al. Feb 2000 A
6029810 Chen Feb 2000 A
6030652 Hanus Feb 2000 A
6035769 Nomura et al. Mar 2000 A
6039182 Light Mar 2000 A
6045006 Fraxier et al. Apr 2000 A
6045264 Miniea Apr 2000 A
6053606 Yamaguchi et al. Apr 2000 A
D425786 Voller May 2000 S
6059457 Sprehe et al. May 2000 A
6070728 Overby et al. Jun 2000 A
6074677 Croft Jun 2000 A
6076967 Beaudette Jun 2000 A
6077373 Fletcher et al. Jun 2000 A
6089271 Tani Jul 2000 A
6105821 Christine et al. Aug 2000 A
6116781 Skeens Sep 2000 A
6161716 Oberhofer et al. Dec 2000 A
6164826 Petkovsek Dec 2000 A
6202849 Graham Mar 2001 B1
6220702 Nakamura et al. Apr 2001 B1
6224528 Bell May 2001 B1
6227706 Tran May 2001 B1
6231234 Gebhardt May 2001 B1
6231236 Tilman May 2001 B1
6274181 Richison et al. Aug 2001 B1
D451542 Ishizawa et al. Dec 2001 S
6357915 Anderson Mar 2002 B2
6402873 Fujii et al. Jun 2002 B1
6408872 Skeens et al. Jun 2002 B1
6423356 Richison et al. Jul 2002 B2
6520071 Lanza Feb 2003 B1
20010023572 Savage et al. Sep 2001 A1
20040000501 Shah et al. Jan 2004 A1
20040000502 Shah et al. Jan 2004 A1
20040000503 Shah et al. Jan 2004 A1
20040007494 Popeil et al.. Jan 2004 A1
Foreign Referenced Citations (23)
Number Date Country
0 723 915 Jul 1996 EP
0 836 927 Apr 1998 EP
1 053 945 Nov 2000 EP
55-90364 Jul 1980 JP
62-192779 Aug 1987 JP
7-299865 Nov 1995 JP
8-90740 Apr 1996 JP
9-131846 May 1997 JP
9-252919 Sep 1997 JP
10034760 Feb 1998 JP
10-138377 May 1998 JP
10-180846 Jul 1998 JP
11-77903 Mar 1999 JP
11-151142 Jun 1999 JP
11-254631 Sep 1999 JP
2000-15767 Jan 2000 JP
2000-218746 Aug 2000 JP
20-0248033 May 1995 KR
WO 0071422 Nov 2000 WO
WO 0228577 Apr 2002 WO
WO 02066227 Aug 2002 WO
WO 02074522 Sep 2002 WO
WO 2004078609 Sep 2004 WO
Related Publications (1)
Number Date Country
20060243386 A1 Nov 2006 US
Provisional Applications (1)
Number Date Country
60452138 Mar 2003 US
Continuations (1)
Number Date Country
Parent 10794349 Mar 2004 US
Child 11479510 US