Method for manufacturing medical devices from linear elastic materials while maintaining linear elastic properties

Information

  • Patent Grant
  • 7163550
  • Patent Number
    7,163,550
  • Date Filed
    Wednesday, March 26, 2003
    21 years ago
  • Date Issued
    Tuesday, January 16, 2007
    17 years ago
Abstract
Medical devices and methods of manufacturing medical devices at least partially from linear elastic materials. The manufacturing methods may include cold-forming and/or low-temperature heat setting to construct medical devices.
Description
FIELD OF THE INVENTION

The present invention pertains to medical devices and methods for manufacturing medical devices. More particularly, the present invention pertains to manufacturing medical devices at least in part from linear elastic materials.


BACKGROUND

A vast number of medical devices are available for the treatment of numerous ailments. Each of the different types of devices have certain uses, characteristics, and features. Often the features of a particular device can be derived from the materials used to manufacture the device. For example, a manufacturer may choose to construct a catheter at least partially from flexible materials so that the catheter can bend when navigating the vasculature. The type of flexible material used for making this flexible catheter may further vary depending on the amount of flexibility desired and the practicability of working with the material. Because of the variability among materials, each particular material may have certain advantages and disadvantages. There is an ongoing need for further improvements and refinements to medical devices including improvements regarding the selection of materials and methods used for manufacturing them.


BRIEF SUMMARY

The present invention pertains to medical devices that are at least partially manufactured from linear elastic materials. Additionally, the present invention also pertains to methods for manufacturing medical devices from linear elastic materials. These methods may include, for example, cold-forming and/or low-temperature heat setting. Some examples of these medical devices and methods of manufacturing medical devices are described in more detail below.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a side view of an example medical device;



FIG. 2 is a side view of an embolic protection filter frame assembly disposed adjacent a forming member;



FIG. 3 is a side view of the embolic protection filter frame assembly and forming member shown in FIG. 2 with a filter membrane coupled to the frame assembly; and



FIG. 4 is a stress-strain curve for linear elastic nitinol after low-temperature heat treatment.





DETAILED DESCRIPTION

The following description should be read with reference to the drawings wherein like reference numerals indicate like elements throughout the several views. The detailed description and drawings illustrate example embodiments of the claimed invention.


Shape-memory and super elastic materials, including nickel-titanium alloys such as nitinol, have numerous applications throughout the medical device and other industries. The numerous applications may be due to the shape-memory and super elastic properties of these materials, which may be desirable. The desirable properties of super elastic and shape-memory materials are generally not native to the commercially available or “bulk” materials and, instead, need to be imparted by subjecting them to a number of processing steps. For example, the processing steps may include heat treatment, cold working, and/or other processing steps. In some instances, these processing steps may be sophisticated or complicated.


Some varieties of super elastic materials, for example nitinol alloys, may be commercially available or otherwise can be processed to be “linear elastic”. The linear elastic versions of nitinol are similar in chemistry to conventional shape memory and super elastic varieties and may exhibit distinct and useful mechanical properties. For example, linear elastic nitinol does not display a “super elastic plateau” or “flag region” in its stress/strain curve, which are indicative of super elastic nitinol. Instead, as recoverable strain increases, the stress continues to increase in an essentially linear relationship until plastic deformation begins. In some embodiments, the linear elastic nickel-titanium alloy is an alloy that does not show any martensite/austenite phase changes that are detectable by DSC and DMTA analysis over a large temperature range. For example, there may be no martensite/austenite phase changes detectable by DSC and DMTA analysis in the range of about −150° C. to about 400° C.


In addition to linear elastic nitinol, a number of other linear elastic or “super elastic precursor” materials are also known and may be available. Some examples of these materials include silver-cadmium alloy, gold-cadmium alloy, gold-copper-zinc alloy, copper-zinc alloy, copper-zinc-aluminum alloy, copper-zinc-tin alloy, iron-beryllium alloy, iron-platinum alloy, indium-thallium alloy, iron-manganese alloy, nickel-titanium-vanadium alloy, iron-nickel-titanium-cobalt alloy, copper-tin alloy, nickel-chromium alloy, nickel-chromium-iron alloy, cobalt alloy, or the like, or other suitable material.



FIG. 1 illustrates an example embolic protection filtering device 10 that is at least partially manufactured from linear elastic or super elastic precursor materials, including any of those listed above. Device 10 may include a shaft 12 and a filter 14 coupled to shaft 12. In some embodiments, shaft 12 may be a guidewire. In other embodiments, shaft 12 may be a tubular filter cartridge configured to be slidable over another device, for example, a guidewire 16. Filter 14 may include a frame assembly 18, which may include a filter loop 20 and one or more struts 22 extending between filter loop 20 and shaft 12. A filter membrane 24 may be coupled to filter loop 20 and, for example, extend distally therefrom. Filter membrane 24 can be drilled (for example, formed by known laser techniques) or otherwise manufactured to include a number of holes or openings. The holes or openings can be sized to allow blood flow therethrough but restrict flow of debris or emboli floating in the body lumen or cavity.


In general, filter 14 may be adapted to operate between a first generally collapsed configuration and a second generally expanded configuration for collecting debris in a body lumen. In some embodiments, filter 14 can be delivered to an appropriate intravascular location, for example “downstream” of an intravascular lesion, using an appropriate filter delivery device. Similarly, filter 14 can be removed from the vasculature at the desired time by an appropriate filter retrieval device.


In at least some embodiments, frame assembly 18 may be at least partially manufactured from linear elastic materials. For example, the portion of frame assembly 18 defining filter loop 20 may be manufactured from linear elastic materials. However, any portion or all of frame assembly 18 may include a linear elastic material. Additionally, other portions of device 10 including shaft 12 may include linear elastic materials. In some embodiments, the linear elastic material may be a nickel-titanium alloy such as linear elastic nitinol. One example of a suitable linear elastic nitinol is FHP-NT alloy commercially available from Furukawa Techno Material Co. of Kanagawa, Japan. It can be appreciated, however, that any of the other materials described herein, or any other appropriate linear elastic or super elastic precursor material may be used.


The manufacturing of device 10 may generally include disposing the linear elastic material, including those linear elastic materials described herein, about a filter forming member 26 to define frame assembly 18 as shown in FIG. 2. According to this embodiment, forming member 26 may have a shape that is generally configured for manufacturing frame assembly 18. For example, forming member 26 may include a groove or slot 28 (which, for example, may be adapted for defining filter loop 20), a tapered distal region 30, and a proximal region 32. Thus, the linear elastic material can be positioned on forming member 26 such that a portion is disposed in groove 28 to define filter loop 20 and a portion is disposed adjacent proximal section 32 that may define other sections of frame assembly 18 such as the one or more struts 22.


In some embodiments, disposing the linear elastic material on forming member 26 to define frame assembly 18 may include cold-forming or room temperature shape setting. In general, cold-forming is understood to be forming, bending, shaping, or otherwise altering the shape of the linear elastic material to define frame assembly 18 without substantially increasing temperature or changing the thermal conditions. For example, cold-forming may occur at temperatures near the ambient room temperature such as about 15–25 degrees Celsius. Although some materials such as linear elastic nitinol may have a tendency to crack when highly deformed, this was, unexpectedly, not found to be the case.


The cold-formed linear elastic nitinol, after disposing it on forming member 26, somewhat unexpectedly can retain the set shape corresponding to the shape of frame assembly 18. However, a certain amount of “spring-back” may be observed. Spring-back is understood to be the tendency of the cold-formed linear elastic material to partially spring back or enlarge to a size that is slightly larger than the size that would otherwise be defined by shaping member 26. The amount of spring-back may vary depending on the material used, amount of thermal energy added (if any), and other factors. However, the amount of spring-back has been found to be substantially consistent among consistent manufacturing conditions. Thus, a manufacturer can reproducibly predict the expected amount of spring-back for essentially any given set of materials and/or thermal conditions.


Because of spring-back, some example manufacturing methods may include manufacturing frame assembly 18 by disposing a linear elastic material on a forming member 26 that is reduced in size. For example, the reduced size forming member 26 may be about 1.25–3 times smaller (i.e., about ⅓ to ⅘ the size of a forming member that might be used in the absence of spring-back). More particularly, forming member 26 may be sized to define a reduced size or “pre spring-back” frame assembly 18 that is about 1.25–3 times smaller than the desired final size for frame assembly 18. After forming the reduced size frame assembly 18, it can spring-back or enlarge to the desired full or final size frame assembly 18. Moreover, given the reproducibility of spring-back, a manufacturer can vary the size of forming member 26 and the thermal conditions to produce frame assemblies in a wide variety of sizes.


In some embodiments, the cold-formed frame assembly 18 may be coupled to filter membrane 24 in any appropriate manner (e.g., dip-molding, spray molding, thermal or adhesive bonding, and the like), as shown in FIG. 3. In some embodiments, filter membrane 24 may be disposed over distal region 30 of forming member 26 and coupled to filter loop 20. Frame assembly 18 and filter membrane 24 can be dissociated from forming member 26 and may be further processed. For example, the disassociated frame assembly 18 and filter membrane 24 can be coupled to shaft 12 in essentially any appropriate manner.


In some other embodiments, frame assembly 18 can be manufactured using low-temperature heat setting. According to this embodiment, the linear elastic material can be can be disposed on forming member 26 to define frame assembly 18 (as shown in FIG. 2) and subjected to a relatively low-temperature heat treatment. For example, the heat treatment may include the linear elastic frame assembly 18 at temperatures of about 275° Celsius or less, for example about 150–375° Celsius, or for example about 200–300° Celsius, or for example about 225–275° Celsius, etc. These thermal conditions are lower than those typically used for shape setting super elastic material, which may be about 400–550° Celsius or more. Of course the precise temperature conditions may vary, depending on the material used. The amount of time over which the low-temperature heat setting occurs may also vary. For example, the linear elastic frame assembly 18 may be low-temperature heat set for about 5–60 minutes or more or less.


It is believed that low-temperature heat setting results in the material being substantially set to the desired shape, but results in the material having or maintaining linear elastic properties instead of acquiring super elastic properties. For example, FIG. 4 illustrates an example stress-strain curve for a super elastic nitinol material (SE Niti) and for linear elastic nitinol (LE Niti) that is low-temperature heat set at 250° Celsius. The stress-strain curve of the super elastic nitinol shows that in a first region Q of the curve, as stress is increased the strain also increases in a generally proportional manner. The proportional increases in stress and strain continue to a point X. Beyond point X, the material passes through a plateau region P, which is characteristic of super elastic materials, where the material continues to elongate while stress remains relatively constant. At some point, the super elastic nitinol reaches its yield point Y. The low-temperature heat set linear elastic nitinol also exhibits generally proportional increases in stress and strain through region Q′, similar to the super elastic nitinol. However, the stress-strain curve for the linear elastic material does not include a plateau region. Instead, stress and strain continue to increase proportionally to a yield point Y′ (beyond which the material plastically deforms) and, eventually, to a fracture or failure point. The yield point Y′ for linear elastic nitinol has been found to be at about 4% strain. Thus, linear elastic nitinol could have up to about 4% recoverable strain. Similar observations were made under differing heat setting conditions, including variations in temperature (about 300° Celsius or less) and in the length of time that heat setting occurs over (in the range of about 5–60 minutes).


Although the above discussion describes some the manufacturing methods for constructing filtering devices at least partially from linear elastic materials, this is not intended to be limited to just filtering devices. It can be appreciated that a number of other medical devices may be similarly manufactured from linear elastic materials according the manufacturing methods described herein. For example, some of the other types of medical devices may include electro-physiology baskets, stents, stent connectors, guidewire coils and couplers, vena cava filters, snares, stiffening wires and mandrels for catheters, support coils or ribbons for catheters, bone anchors, orthodontic wires and devices, curved needles and other direct injection drug delivery devices, electrodes, heart valves, distal protection filters and filter baskets, and the like.


It should be understood that this disclosure is, in many respects, only illustrative. Changes may be made in details, particularly in matters of shape, size, and arrangement of steps without exceeding the scope of the invention. The invention's scope is, of course, defined in the language in which the appended claims are expressed.

Claims
  • 1. A method of manufacturing an embolic protection filtering device, comprising the steps of: providing a linear elastic shaft;providing a filter shaping member, the shaping member including a filter loop defining region; anddisposing the linear elastic shaft adjacent the filter loop defining region, wherein disposing the linear elastic shaft adjacent the filter loop defining region alters the shape of the linear elastic shaft so that it substantially conforms to the shape of the filter loop defining region to define a filter loop, and wherein the filter loop exhibits a linear elastic response to stress.
  • 2. The method of claim 1, wherein the linear elastic shaft includes a linear elastic nickel-titanium alloy.
  • 3. The method of claim 1, wherein the filter shaping member is smaller in size than the filter loop so that the step of disposing the linear elastic shaft adjacent the filter loop defining region includes defining a preliminary filter loop that expands to define the filter loop when the shaft and the mandrel are disassociated.
  • 4. The method of claim 1, wherein the step of disposing the linear elastic shaft adjacent the filter loop defining region occurs at a temperature in the range of about 15 to 25 degrees Celsius.
  • 5. The method of claim 1, wherein the step of disposing the linear elastic shaft adjacent the filter loop defining region includes heat treatment.
  • 6. The method of claim 5, wherein heat treatment includes heating the shaft at a temperature less than 300 degrees Celsius.
  • 7. The method of claim 5, wherein heat treatment includes heating the shaft for about 5 to about 60 minutes.
  • 8. The method of claim 1, further comprising the step of coupling a filter membrane to the filter loop.
  • 9. The method of claim 1, further comprising the step of coupling the filter loop to a shaft member.
  • 10. The method of claim 9, wherein the shaft member is a guidewire.
  • 11. The method of claim 9, wherein the shaft member is a tubular filter cartridge.
  • 12. An embolic protection filtering device, comprising: a shaft;a filter coupled to the shaft, the filter including a filter frame assembly and a filter membrane coupled to the filter frame assembly and extending distally therefrom, the frame assembly including a filter loop and one or more struts extending between the filter loop and the shaft; andwherein at least a portion of the frame assembly includes a linear elastic material.
  • 13. The filtering device of claim 12, wherein the filter loop includes a linear elastic material.
  • 14. The filtering device of claim 12, wherein the linear elastic material includes nickel-titanium alloy.
  • 15. A method of manufacturing an embolic protection filter, comprising the steps of: providing a linear elastic shaft formed at least in part from a precursor of a superelastic material;forming the linear elastic shaft into a shape that defines a filter loop and one or more struts, the loop and struts having linear elastic properties;coupling a filter membrane to the filter loop; andcoupling the one or more struts to a shaft member.
  • 16. The method of claim 15, wherein the step of forming the linear elastic shaft into a shape that defines a filter loop and one or more struts includes disposing the linear elastic shaft about a forming member.
  • 17. The method of claim 15, wherein the step of forming the linear elastic shaft into a shape that defines a filter loop and one or more struts includes low-temperature heat setting.
  • 18. The method of claim 17, wherein low-temperature heat setting includes heat setting at a temperature less than about 300 degrees Celsius.
  • 19. The method of claim 17, wherein low-temperature heat setting includes heat setting for about 5 to about 60 minutes.
  • 20. A method of manufacturing an embolic protection filtering device, comprising the steps of: providing a nickel-titanium alloy shaft;disposing the shaft on a forming member;heat-treating the shaft at a temperature less than about 300 degrees Celsius so as to define a filter frame assembly, and wherein the frame assembly exhibits linear elastic properties.
US Referenced Citations (168)
Number Name Date Kind
3472230 Fogarty Oct 1969 A
3952747 Kimmell, Jr. Apr 1976 A
3996938 Clark, III Dec 1976 A
4046150 Schwartz et al. Sep 1977 A
4425908 Simon Jan 1984 A
4590938 Segura et al. May 1986 A
4619246 Molgaard-Nielsen et al. Oct 1986 A
4650466 Luther Mar 1987 A
4706671 Weinrib Nov 1987 A
4723549 Wholey et al. Feb 1988 A
4790812 Hawkins, Jr. et al. Dec 1988 A
4790813 Kensey Dec 1988 A
4794928 Kletschka Jan 1989 A
4807626 McGirr Feb 1989 A
4842579 Shiber Jun 1989 A
4873978 Ginsburg Oct 1989 A
4886061 Fischell et al. Dec 1989 A
4921478 Solano et al. May 1990 A
4921484 Hillstead May 1990 A
4926858 Gifford, III et al. May 1990 A
4969891 Gewertz Nov 1990 A
4998539 Delsanti Mar 1991 A
5002560 Machold et al. Mar 1991 A
5011488 Ginsburg Apr 1991 A
5053008 Bajaj Oct 1991 A
5057114 Wittich et al. Oct 1991 A
5067957 Jervis Nov 1991 A
5069226 Yamauchi et al. Dec 1991 A
5071407 Termin et al. Dec 1991 A
5100423 Fearnot Mar 1992 A
5102415 Guenther et al. Apr 1992 A
5133733 Rasmussen et al. Jul 1992 A
5152771 Sabbaghian et al. Oct 1992 A
5152777 Goldberg et al. Oct 1992 A
5160342 Reger et al. Nov 1992 A
5197978 Hess Mar 1993 A
5224953 Morgentaler Jul 1993 A
5230348 Ishibe et al. Jul 1993 A
5238004 Sahatjian et al. Aug 1993 A
5329942 Gunther et al. Jul 1994 A
5330484 Gunther Jul 1994 A
5354310 Garnie et al. Oct 1994 A
5376100 Lefebvre Dec 1994 A
5411476 Abrams et al. May 1995 A
5421832 Lefebvre Jun 1995 A
5423742 Theron Jun 1995 A
5449372 Schmaltz et al. Sep 1995 A
5456667 Ham et al. Oct 1995 A
5462529 Simpson et al. Oct 1995 A
5536242 Willard et al. Jul 1996 A
5549626 Miller et al. Aug 1996 A
5597378 Jervis Jan 1997 A
5637089 Abrams et al. Jun 1997 A
5658296 Bates et al. Aug 1997 A
5662671 Barbut et al. Sep 1997 A
5695519 Summers et al. Dec 1997 A
5720764 Naderlinger Feb 1998 A
5728066 Daneshvar Mar 1998 A
5749848 Jang et al. May 1998 A
5769796 Palermo et al. Jun 1998 A
5769816 Barbut et al. Jun 1998 A
5776162 Kleshinski Jul 1998 A
5779716 Cano et al. Jul 1998 A
5792157 Mische et al. Aug 1998 A
5795322 Boudewijn Aug 1998 A
5800457 Gelbfish Sep 1998 A
5800525 Bachinski et al. Sep 1998 A
5807398 Shaknovich Sep 1998 A
5810874 Lefebvre Sep 1998 A
5814064 Daniel et al. Sep 1998 A
5827324 Cassell et al. Oct 1998 A
5833644 Zadno-Azizi et al. Nov 1998 A
5833650 Imran Nov 1998 A
5836969 Kim et al. Nov 1998 A
5843244 Pelton et al. Dec 1998 A
5846247 Unsworth et al. Dec 1998 A
5846260 Maahs Dec 1998 A
5848964 Samuels Dec 1998 A
5876367 Kaganov et al. Mar 1999 A
5895399 Barbut et al. Apr 1999 A
5902317 Kleshinski et al. May 1999 A
5910154 Tsugita et al. Jun 1999 A
5911734 Tsugita et al. Jun 1999 A
5925016 Chornenky et al. Jul 1999 A
5925060 Forber Jul 1999 A
5925062 Purdy Jul 1999 A
5935139 Bates Aug 1999 A
5941869 Patterson et al. Aug 1999 A
5941896 Kerr Aug 1999 A
5947995 Samuels Sep 1999 A
5951793 Mitose et al. Sep 1999 A
5954745 Gertler et al. Sep 1999 A
5980555 Barbut et al. Nov 1999 A
5989281 Barbut et al. Nov 1999 A
5993469 McKenzie et al. Nov 1999 A
5997557 Barbut et al. Dec 1999 A
6001118 Daniel et al. Dec 1999 A
6007557 Ambrisco et al. Dec 1999 A
6010522 Barbut et al. Jan 2000 A
6013085 Howard Jan 2000 A
6027520 Tsugita et al. Feb 2000 A
RE36628 Sagae et al. Mar 2000 E
6042553 Solar et al. Mar 2000 A
6042598 Tsugita et al. Mar 2000 A
6051014 Jang Apr 2000 A
6051015 Maahs Apr 2000 A
6053932 Daniel et al. Apr 2000 A
6059814 Ladd May 2000 A
6066149 Samson et al. May 2000 A
6066158 Engelson et al. May 2000 A
6068645 Tu May 2000 A
6086605 Barbut et al. Jul 2000 A
6096053 Bates Aug 2000 A
6117154 Barbut et al. Sep 2000 A
6117157 Tekulve Sep 2000 A
6129739 Khosravi Oct 2000 A
6136016 Barbut et al. Oct 2000 A
6142987 Tsugita Nov 2000 A
6152946 Broome et al. Nov 2000 A
6165200 Tsugita et al. Dec 2000 A
6168571 Solar et al. Jan 2001 B1
6168579 Tsugita Jan 2001 B1
6171327 Daniel et al. Jan 2001 B1
6171328 Addis Jan 2001 B1
6179851 Barbut et al. Jan 2001 B1
6179859 Bates et al. Jan 2001 B1
6179861 Khosravi et al. Jan 2001 B1
6203561 Ramee et al. Mar 2001 B1
6206868 Parodi Mar 2001 B1
6214026 Lepak et al. Apr 2001 B1
6217589 McAlister Apr 2001 B1
6221006 Dubrul et al. Apr 2001 B1
6224620 Maahs May 2001 B1
6231544 Tsugita et al. May 2001 B1
6235044 Root et al. May 2001 B1
6235045 Barbut et al. May 2001 B1
6238412 Dubrul et al. May 2001 B1
6245087 Addis Jun 2001 B1
6245088 Lowery Jun 2001 B1
6245089 Daniel et al. Jun 2001 B1
6258115 Dubrul Jul 2001 B1
6264663 Cano Jul 2001 B1
6264672 Fisher Jul 2001 B1
6270513 Tsugita et al. Aug 2001 B1
6273900 Nott et al. Aug 2001 B1
6277138 Levinson et al. Aug 2001 B1
6277139 Levinson et al. Aug 2001 B1
6280413 Clark et al. Aug 2001 B1
6280539 Abrams et al. Aug 2001 B1
6287321 Jang Sep 2001 B1
6290710 Cryer et al. Sep 2001 B1
6309399 Barbut et al. Oct 2001 B1
6319268 Ambrisco et al. Nov 2001 B1
6344049 Levinson et al. Feb 2002 B1
6346116 Brooks et al. Feb 2002 B1
6375670 Greenhalgh Apr 2002 B1
6402761 McAlister Jun 2002 B1
6428559 Johnson Aug 2002 B1
6461370 Gray et al. Oct 2002 B1
6461453 Abrams et al. Oct 2002 B1
6482222 Bruckheimer et al. Nov 2002 B1
6485507 Walak et al. Nov 2002 B1
6511496 Huter et al. Jan 2003 B1
6517559 O'Connell Feb 2003 B1
6520987 Plante Feb 2003 B1
6726703 Broome et al. Apr 2004 B1
6939362 Boyle et al. Sep 2005 B1
20020193824 Boylan et al. Dec 2002 A1
Foreign Referenced Citations (111)
Number Date Country
28 21 048 Jul 1980 DE
34 17 738 Nov 1985 DE
40 30 998 Oct 1990 DE
199 16 162 Oct 2000 DE
0 200 688 Nov 1986 EP
0 293 605 Dec 1988 EP
0 411 118 Feb 1991 EP
0 427 429 May 1991 EP
0 437 121 Jul 1991 EP
0 472 334 Feb 1992 EP
0 472 368 Feb 1992 EP
0 533 511 Mar 1993 EP
0 655 228 Nov 1994 EP
0 686 379 Jun 1995 EP
0 696 447 Feb 1996 EP
0 737 450 Oct 1996 EP
0 743 046 Nov 1996 EP
0 759 287 Feb 1997 EP
0 771 549 May 1997 EP
0 784 988 Jul 1997 EP
0 812 928 Dec 1997 EP
0 852 132 Jul 1998 EP
0 873 734 Oct 1998 EP
1 127 556 Aug 2001 EP
1 142 604 Oct 2001 EP
2 580 504 Oct 1986 FR
2 643 250 Aug 1990 FR
2 666 980 Mar 1992 FR
2 694 687 Aug 1992 FR
2 768 326 Mar 1999 FR
2 020 557 Jan 1983 GB
8-187294 Jul 1996 JP
764684 Sep 1980 SU
WO 8809683 Dec 1988 WO
WO 9203097 Mar 1992 WO
WO 9414389 Jul 1994 WO
WO 9424946 Nov 1994 WO
WO 9601591 Jan 1996 WO
WO 9610375 Apr 1996 WO
WO 9619941 Jul 1996 WO
WO 9623441 Aug 1996 WO
WO 9633677 Oct 1996 WO
WO 9717100 May 1997 WO
WO 9727808 Aug 1997 WO
WO 9742879 Nov 1997 WO
WO 9802084 Jan 1998 WO
WO 9802112 Jan 1998 WO
WO 9823322 Jun 1998 WO
WO 9833443 Aug 1998 WO
WO 9834673 Aug 1998 WO
WO 9836786 Aug 1998 WO
WO 9838920 Sep 1998 WO
WO 9838929 Sep 1998 WO
WO 9839046 Sep 1998 WO
WO 9839053 Sep 1998 WO
WO 9846297 Oct 1998 WO
WO 9847447 Oct 1998 WO
WO 9849952 Nov 1998 WO
WO 9850103 Nov 1998 WO
WO 9851237 Nov 1998 WO
WO 9855175 Dec 1998 WO
WO 9909895 Mar 1999 WO
WO 9922673 May 1999 WO
WO 9923976 May 1999 WO
WO 9925252 May 1999 WO
WO 9930766 Jun 1999 WO
0 934 729 Aug 1999 WO
WO 9940964 Aug 1999 WO
WO 9942059 Aug 1999 WO
WO 9944510 Sep 1999 WO
WO 9944542 Sep 1999 WO
WO 9955236 Nov 1999 WO
WO 9958068 Nov 1999 WO
WO 0007521 Feb 2000 WO
WO 0007655 Feb 2000 WO
WO 0009054 Feb 2000 WO
WO 0016705 Mar 2000 WO
WO 0049970 Aug 2000 WO
WO 0053120 Sep 2000 WO
WO 0067664 Nov 2000 WO
WO 0067665 Nov 2000 WO
WO 0067666 Nov 2000 WO
WO 0067668 Nov 2000 WO
WO 0067669 Nov 2000 WO
WO 0105462 Jan 2001 WO
WO 0108595 Feb 2001 WO
WO 0108596 Feb 2001 WO
WO 0108742 Feb 2001 WO
WO 0108743 Feb 2001 WO
WO 0110320 Feb 2001 WO
WO 0115629 Mar 2001 WO
WO 0121077 Mar 2001 WO
WO 0121100 Mar 2001 WO
WO 0126726 Apr 2001 WO
WO 0135857 May 2001 WO
WO 0143662 Jun 2001 WO
WO 0147579 Jul 2001 WO
WO 0149208 Jul 2001 WO
WO 0149209 Jul 2001 WO
WO 0149215 Jul 2001 WO
WO 0149355 Jul 2001 WO
WO 0152768 Jul 2001 WO
WO 0158382 Aug 2001 WO
WO 0160442 Aug 2001 WO
WO 0167989 Sep 2001 WO
WO 0170326 Sep 2001 WO
WO 0172205 Oct 2001 WO
WO 0187183 Nov 2001 WO
WO 0189413 Nov 2001 WO
WO 0191824 Dec 2001 WO
WO 02094111 Nov 2002 WO
Related Publications (1)
Number Date Country
20040193207 A1 Sep 2004 US