Method for manufacturing optical element

Information

  • Patent Grant
  • 7666468
  • Patent Number
    7,666,468
  • Date Filed
    Monday, February 6, 2006
    18 years ago
  • Date Issued
    Tuesday, February 23, 2010
    14 years ago
Abstract
A method for manufacturing an optical element having a metal wire grid containing a plurality of metal wires on a substrate includes forming the metal wire grid with an LSP (Liquid Self-patterning Process).
Description
CROSS-REFERENCES TO RELATED APPLICATIONS

The entire disclosure of Japanese Patent Application No. 2005-034369, filed on Feb. 10, 2005, is expressly incorporated herein by reference.


BACKGROUND

1. Technical Field


The present invention relates to a method for manufacturing an optical element, specifically, a wire grid polarizer for visible spectrum light.


2. Related Art


Conventionally, various optical elements, e.g., wide band wire grid polarizers that effectively transmit certain polarized light and reflect polarized light that runs perpendicular to that light, have been being developed as disclosed in JP-T-2003-502708 and others.


In inorganic polarizers that are currently in practical use, after resist patterning being performed on a substrate, dry etching is performed using RIE (Reactive Ion Etching) or the like to form a metal embossed pattern. However, when forming an embossed pattern on the nano-order, it is necessary to strictly control the etching parameter, so it has been difficult to manufacture a highly-accurate polarizer at a high yield. Therefore, there has been a demand for manufacturing an optical element, such as a polarizer, that is more inexpensive, highly-accurate, and capable of being mass-produced in greater quantities.


SUMMARY

An advantage of some aspects of the invention is to provide an optical element, such as a polarizer, that is more inexpensive, highly-accurate, and capable of being mass-produced in greater quantities.


According to an aspect of the invention, a method for manufacturing an optical element having a metal wire grid containing a plurality of metal wires on a substrate, comprising forming the metal wire grid with an LSP (Liquid Self-patterning Process) is provided.


It is preferable that the metal wire grid is formed using a metal nano-paste as an embedded paste.


It is preferable that a resist pattern having a concave portion to embed the metal nano-paste therein is provided, and upon the metal nano-paste being burned, metal particles are deposited in the concave portion of the resist pattern.


It is preferable that the metal nano-paste is made from two or more kinds of metals, and forms a multi-element metal wire gird.


It is preferable that after the burning of the metal nano-paste, an LSP is conducted one or more times to form a multi-layered wire grid.


It is preferable that the metal nano-paste contains one or more kinds of metals selected from a group consisting of Al, Ag and Au.


It is preferable that a visible spectrum light polarizer is manufactured as the optical element.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A to 1E are process diagrams illustrating an embodiment of a method for manufacturing a visible spectrum light polarizer.



FIG. 2A and FIG. 2B show an example of a visible spectrum light polarizer including a wire grid made from two kinds of metals.





DESCRIPTION OF EXEMPLARY EMBODIMENTS

Hereinafter, preferred embodiments of the method for manufacturing an optical element according to the invention are explained. However, the invention is not limited in any way to those embodiments.



FIGS. 1A to 1E show an example of the steps for manufacturing a visible spectrum polarizer according to the invention.


Embodiment 1

(1) Resist Pattern Formation


As shown in FIG. 1A, a resist pattern 12 is formed on a substrate of quartz or the like using an ordinary method.


(2) Metal Nano-Paste Embedding


Next, as shown in FIG. 1B, a metal nano-paste 13 made from aluminum (Al) was applied using a spin coating LSP (Liquid Self-patterning process) so that the metal nano-paste 13 is embedded in each concave portion between the resists 12. The rotation speed during the spin coating was 4000 rpm (for 2 seconds), and then was lowered to 2000 rpm (for 20 seconds). It is preferable that for the initial 2 seconds, the spin coating rotation speed is within the range of 500 to 10000 rpm; specifically, 1000 to 7000 rpm, and more specifically 2000 to 5000 rpm is preferable. In this embodiment, the viscosity of the metal nano-paste 13 was 8.3 cps.


(3) Burning Process


As shown in FIG. 1C, the metal nano-paste 13 was then burned at a low temperature (200° C. or less) in a heating furnace to form the base for a wire grid 14. Upon the metal nano-paste 13 being burned, metal particles of 100 nm or less in size were deposited in the concave portions between the resists 12. Each of the metal particles forming the metal-nano paste 13 only needs to have a diameter that is smaller than the width of the metal grid wire that the particles are to form, and preferably, that diameter is 100 nm or less.


(4) Wire Grid Formation


As shown in FIG. 1D, the above processes (1) through (3) were repeated until the metal wire grid 14 reaches a desired height.


(5) Resist Removal


As shown in FIG. 1E, when the metal wire grid 14 reached the desired height, the resists 12 were removed. In this way, a polarizer 10 that is a highly-accurate optical element, having a metal wire grid 14, that is capable of being mass-produced in greater quantities can be obtained at low cost.


Embodiment 2

Next, an embodiment in which a paste made from two kinds of metals, Al and silver (Ag), was used as a metal nano-paste will be explained below. FIGS. 2A and 2B show an example of a visible spectrum light polarizer having a wire grid made from two kinds of metals (a laminated alloy), formed by the manufacturing method according to this embodiment. FIG. 2A is a perspective view of a polarizer according to Embodiment 2, and FIG. 2B is a cross-sectional view of the polarizer shown in FIG. 2A taken along the X-X direction.


The method of manufacturing a polarizer according to this embodiment has the same steps as those in Embodiment 1 except the use of a paste made from two kinds of metals, Al and Ag, as a metal nano-paste to be embedded in the concave portions between the resists. Accordingly, for the points not specifically described in Embodiment 2, the matter explained in Embodiment 1 will arbitrarily be adopted.


In this embodiment, a metal nano-paste 13 made from Al, and a metal nano-paste 13 made from Ag were alternately applied by spin coating so that the metal nano-paste 13 is embedded in the concave portions between the resists 12. After the removal of the resists 12, a polarizer 20, which is a highly-accurate optical element, having a metal wire grid 14 containing a plurality of metal wires 14 with Al and Ag alternately laminated, that is capable of being mass-produced in greater quantities (multi-element and multi-layered metal wire grid) can easily be obtained at low cost.


Also in this embodiment, upon the nano-paste 13 being burned, metal particles of 100 nm or less in size were deposited in the concave portions between the resists 12.


Modification


The invention provides the aforementioned preferred embodiments. However, the invention is not limited to those embodiments, and can be modified so long as the modification does not depart from the technical scope of the invention.


In the embodiments, for the LSP, a metal nano-paste was used as an embedded paste. Otherwise, a solution containing nano-carbon, such as carbon nanotube, can be used.


For the metal to form the metal wire grid, other than Al and Ag, it is also preferable to use gold (Au), and a mixture thereof can also be used. A solid solution or intermetalic compound of Al and Ag may also be used.


In the embodiments, a visible spectrum light polarizer is manufactured as an optical element. However, the invention can also be applied to obtain a diffraction grating.


According to the invention, an optical element, such as a polarizer, that is highly-accurate and capable of being mass-produced in greater quantities can be obtained at low cost by forming a metal wire grid in the optical element using an LSP. Also, a multi-element and multi-layered metal wire grid can be formed easily, which widens the scope for material selection.


The invention is industrially applicable as a method for manufacturing an optical element, such as a polarizer, that is capable of being mass-produced in greater quantities at low cost.

Claims
  • 1. A method for manufacturing a visible spectrum light polarizing optical element having a laminated multi-metal wire grid containing a plurality of metal wires on a substrate, the method comprising the steps of: forming a resist on the substrate;forming concave portions in the resist to provide a resist pattern on the substrate;embedding Al and Ag nano-pastes in the concave portions of the resist pattern by: (i) applying the Al nano-paste in the concave portions of the resist pattern by spin coating the Al nano-paste;(ii) after step (i), heating the applied Al nano-paste at a temperature of 200° C. or less to deposit nano-scale Al particles contained in the Al nano-paste in the concave portions of the resist pattern;(iii) after step (ii), applying the Ag nano-paste in the concave portions of the resist pattern by spin coating the Ag nano-paste;(iv) after step (iii), heating the applied Ag nano-paste at a temperature of 200° C. or less to deposit nano-scale Ag particles contained in the Ag nano-paste in the concave portions of the resist pattern; andrepeating steps (i) to (iv) until a desired height for the visible spectrum light polarizing optical element is reached; andremoving the resist pattern to form the laminated multi-metal wire grid,wherein each of the nano-scale Al and Ag particles has a diameter of 100 nm or less,the spin coating of the AL and AG nano-pastes is performed by initial coating and subsequent coating, andthe initial coating is performed at a rotation speed of 2000-5000 rpm.
Priority Claims (1)
Number Date Country Kind
2005-034369 Feb 2005 JP national
US Referenced Citations (11)
Number Name Date Kind
5478527 Gustafson et al. Dec 1995 A
6122103 Perkins et al. Sep 2000 A
6243199 Hansen et al. Jun 2001 B1
6288840 Perkins et al. Sep 2001 B1
6532111 Kurtz et al. Mar 2003 B2
6788461 Kurtz et al. Sep 2004 B2
20040023488 Goldstein Feb 2004 A1
20040089101 Winter et al. May 2004 A1
20040201890 Crosby Oct 2004 A1
20050243314 Chinnock Nov 2005 A1
20060050273 Chinnock et al. Mar 2006 A1
Foreign Referenced Citations (9)
Number Date Country
1363048 Aug 2002 CN
2002-328234 Nov 2002 JP
2003-502708 Jan 2003 JP
2003-508813 Mar 2003 JP
2004-077831 Mar 2004 JP
2004-273205 Sep 2004 JP
2004-309903 Nov 2004 JP
WO 0079317 Dec 2000 WO
WO 0118570 Mar 2001 WO
Related Publications (1)
Number Date Country
20060177571 A1 Aug 2006 US