The present application is related to co-pending application Ser. No. 12/201,943 filed on Aug. 29, 2008, the contents of which are incorporated herein by reference.
1. Technical Field
The present invention relates to optical detectors in general, and in particular to a method for manufacturing vertical germanium detectors.
2. Description of Related Art
Photodetection in the near-infrared (IR) regime has many applications, such as telecommunications, thermal imaging, etc. InGaAs-based PIN photodetectors are commonly used for telecommunication applications due to their high responsivity and speed. However, the majority of the InGaAs-based detectors are normal incidence detectors, and the integration of such devices on silicon surfaces can be very expensive. Also, integration of high-speed InGaAs detectors requires special optics to focus light into a small active area, which has been found to reduce device performance.
Germanium-based detectors are known to be a suitable alternative. However, germanium-based detectors exhibit a higher dark current than InGaAs-based detectors, which limit their application in the telecommunications industry. In recent years, attempts have been made to improve the performance of polycrystalline germanium-based detectors for these applications. One exemplary prior art poly-germanium detector is described by Colace et al. in an article entitled Efficient high-speed near-infrared Ge photodetectors integrated on Si substrates (Applied Physics Letters, vol. 76, p. 1231 et seq., 2000).
The present disclosure provides an improved method for manufacturing vertical germanium-based detectors.
In accordance with a preferred embodiment of the present invention, a detector window is initially opened through an oxide layer on a single crystalline substrate. Next, a single crystal germanium layer is grown within the detector window, and an amorphous germanium layer is grown on the oxide layer. The amorphous germanium layer is then polished and removed until only a portion of the amorphous germanium layer is located around the single crystal germanium layer. A tetraethyl orthosilicate (TEOS) layer is deposited on the amorphous germanium layer and the single crystal germanium layer. An implant is subsequently performed on the single crystal germanium layer. After an oxide window has been opened on the TEOS layer, a titanium layer is deposited on the single crystal germanium layer to form a germanium detector.
All features and advantages of the present invention will become apparent in the following detailed written description.
The invention itself, as well as a preferred mode of use, further objects, and advantages thereof, will best be understood by reference to the following detailed description of an illustrative embodiment when read in conjunction with the accompanying drawings, wherein:
Referring now to the drawings and in particular to
A single crystal germanium layer 14 is then grown within detector window 11, as depicted in
Single crystal germanium layer 14 and amorphous germanium layer 15 are then polished via a chemical mechanical polish (CMP), as shown in
Using a mask, the remaining portion of amorphous germanium layer 15 is removed via a dry etch, leaving a portion of amorphous germanium layer 15 located around single crystal germanium layer 14, as depicted in
After a tetraethyl orthosilicate (TEOS) layer 16 has been deposited on amorphous germanium layer 15 and single crystal germanium layer 14, a p+ implant region 17 is created on single crystal germanium layer 14 via a mask and the dopant is activated using an anneal, as shown in
TEOS (or germanium oxy-nitride) layer 16 is then patterned using a resist mask and a dry etch is utilized to open an oxide window 18, as depicted in
A titanium deposition is performed on single crystal germanium layer 14 that is exposed through oxide window 18. One or more heat treatments are then used to form a TiGe material 19 within oxide window 18, as shown in
Any un-reacted titanium over TEOS layer 16 can be removed using a resist mask and dry etch. Using a wet process to remove the un-reacted titanium generates concerns of creating voids in the underlying germanium or even removing the germanide itself. The processing options are not limited to titanium germanide as any refractory metal may be used to form the germanide, especially titanium and nickel for underlying p+ germanium, and erbium, zirconium and ytterbium for underlying n+ germanium.
As has been described, the present invention provides an improved method for manufacturing a vertical germanium detector. Although the process described above is intended for an underlying n+ silicon layer and a p+ doped germanium layer, it is understood by those skilled in the art that the same principle can be applied to an underlying p+ silicon layer and an n+ doped germanium layer.
While the invention has been particularly shown and described with reference to a preferred embodiment, it will be understood by those skilled in the art that various changes in form and detail may be made therein without departing from the spirit and scope of the invention.
The present application claims priority under 35 U.S.C. §119(e)(1) to provisional application No. 60/999,717, filed on Oct. 19, 2007, the contents which are incorporated herein by reference.
The present invention was made with United States Government assistance under Contract No. HR0011-05-C-0027 awarded by Defense Advanced Research Projects Agency (DARPA). The United States Government has certain rights in the present invention.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2008/080471 | 10/20/2008 | WO | 00 | 6/4/2009 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2009/052479 | 4/23/2009 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4420258 | Burns et al. | Dec 1983 | A |
4547072 | Yoshida et al. | Oct 1985 | A |
4748617 | Drewlo | May 1988 | A |
4921354 | SooHoo | May 1990 | A |
5165001 | Takagi et al. | Nov 1992 | A |
5281805 | Sauer | Jan 1994 | A |
5371591 | Martin et al. | Dec 1994 | A |
5430755 | Perlmutter | Jul 1995 | A |
5625636 | Bryan et al. | Apr 1997 | A |
5674778 | Lee et al. | Oct 1997 | A |
5703989 | Khan et al. | Dec 1997 | A |
5736461 | Berti et al. | Apr 1998 | A |
5828476 | Bonebright et al. | Oct 1998 | A |
5834800 | Jalali-Farahani et al. | Nov 1998 | A |
6117771 | Murphy et al. | Sep 2000 | A |
6242324 | Kub et al. | Jun 2001 | B1 |
6331445 | Janz et al. | Dec 2001 | B1 |
6387720 | Misheloff et al. | May 2002 | B1 |
6400996 | Hoffberg et al. | Jun 2002 | B1 |
6477285 | Shanley | Nov 2002 | B1 |
6605809 | Engels et al. | Aug 2003 | B1 |
6677655 | Fitzergald | Jan 2004 | B2 |
6680495 | Fitzergald | Jan 2004 | B2 |
6738546 | Deliwala | May 2004 | B2 |
6785447 | Yoshimura et al. | Aug 2004 | B2 |
6795622 | Forrest et al. | Sep 2004 | B2 |
6850252 | Hoffberg | Feb 2005 | B1 |
6861369 | Park | Mar 2005 | B2 |
6936839 | Taylor | Aug 2005 | B2 |
6968110 | Patel et al. | Nov 2005 | B2 |
7006881 | Hoffberg et al. | Feb 2006 | B1 |
7010208 | Gunn, III et al. | Mar 2006 | B1 |
7043106 | West et al. | May 2006 | B2 |
7072556 | Gunn, III et al. | Jul 2006 | B1 |
7082247 | Gunn, III et al. | Jul 2006 | B1 |
7103252 | Ide | Sep 2006 | B2 |
7139448 | Jain et al. | Nov 2006 | B2 |
7215845 | Chan et al. | May 2007 | B1 |
7218809 | Zhou et al. | May 2007 | B2 |
7218826 | Gunn, III et al. | May 2007 | B1 |
7259031 | Dickson et al. | Aug 2007 | B1 |
7272279 | Ishikawa et al. | Sep 2007 | B2 |
7315679 | Hochberg et al. | Jan 2008 | B2 |
7333679 | Takahashi | Feb 2008 | B2 |
7348230 | Matsuo et al. | Mar 2008 | B2 |
7356221 | Chu et al. | Apr 2008 | B2 |
20030026546 | Deliwala | Feb 2003 | A1 |
20030183825 | Morse | Oct 2003 | A1 |
20040146431 | Scherer et al. | Jul 2004 | A1 |
20040190274 | Saito et al. | Sep 2004 | A1 |
20050094938 | Ghiron et al. | May 2005 | A1 |
20060158723 | Voigt et al. | Jul 2006 | A1 |
20060238866 | Von Lerber | Oct 2006 | A1 |
20060240667 | Matsuda et al. | Oct 2006 | A1 |
20070099329 | Maa et al. | May 2007 | A1 |
20070116398 | Pan et al. | May 2007 | A1 |
20070161142 | Mouli et al. | Jul 2007 | A1 |
20070202254 | Ganguli et al. | Aug 2007 | A1 |
20080159751 | Matsui et al. | Jul 2008 | A1 |
20080240180 | Matsui et al. | Oct 2008 | A1 |
Number | Date | Country |
---|---|---|
0 818 693 | Jan 1998 | EP |
1 067 409 | Jan 2001 | EP |
9314514 | Jul 1993 | WO |
0127669 | Apr 2001 | WO |
0216986 | Feb 2002 | WO |
2004088724 | Oct 2004 | WO |
2007149055 | Dec 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20100029033 A1 | Feb 2010 | US |
Number | Date | Country | |
---|---|---|---|
60999717 | Oct 2007 | US |