1. Field of Invention
The present invention relates to a tool and, more particularly, to a method for marking a tool so that the tool bears a clear, durable and aesthetic mark.
2. Related Prior Art
People drive threaded bolts and nuts of various shapes and sizes with tools such as open-ended wrenches, box-ended wrenches, monkey wrenches, socket wrenches or screwdrivers. A toolkit may include a handle and a set of sockets and/or screwdriver bits of various shapes and sizes. In operation, the handle is connected to a selected one of the sockets and/or screwdriver bits for driving a threaded bolt or nut of a certain shape and size. Thus, a toolkit can be used to drive threaded bolts and nuts of various shapes and sizes.
It is important to mark the tools to indicate their sizes and/or carry trademarks, logos and/or patterns. Conventionally, printing machines are used to print the tools with marks. Such printing machines are however expensive. Moreover, the printed marks are unclear for inadequate contrast to the background.
There has been an attempt to provide plastic collars of different colors on the tools. The plastic collars could easily be blurred, damaged or detached from the tools so that the tools would be poorly marked or not marked at all.
Pressing machines may alternatively be used to indent the tools with marks. Such pressing machines are however expensive. In addition, the indented marks are unclear. This problem will be even worse when the indented marks are filled with dirt and grease after some time of use.
A tool may be provided with a coating via electroplating after the indented mark is made. The coating is provided on the tool in and outside the indented mark. The coating protects the tool from rust. The coating is however unclear since the color of the portion of the tool within the indented mark is identical to the color of the portion of the tool outside the indented mark.
A tool may alternatively be provided with manganese phosphate after the indented mark is made. The manganese phosphate protects the tool from rust. The manganese phosphate however makes the tool look black and blur the indented mark.
Therefore, the present invention is intended to obviate or at least alleviate the problems encountered in prior art.
It is the primary objective of the present invention to provide an effective method for marking a tool.
To achieve the foregoing objective, the method includes the steps of forming a tool, making an indented mark in the tool, hardening the tool, coloring the tool to provide a color layer on the tool in and near the indented mark, clearing the tool of redundant colorant that overflows from the indented mark, black dying the tool to provide a black-died layer on the tool except the indented mark, and providing a transparent layer on the protection layer except the mark. The thickness of the transparent layer is larger than the thickness of the mark.
Other objectives, advantages and features of the present invention will be apparent from the following description referring to the attached drawings.
The present invention will be described via detailed illustration of two embodiments referring to the drawings wherein:
Referring to
Referring to
At S12, the tool 10 is subject to thermal treatment to increase the hardness of thereof. Thus, the tool 10 is not vulnerable to wearing.
At S13, the tool 10 is subject to trimming (or “paring”) to clear the surface thereof of burrs and/or grains that occur during the forming and/or thermal treatment. The trimming is done by vibration grinding or polishing. The vibration grinding or polishing could further clear the surface of the tool 10 of oil, grease, dust and/or any other form of contamination. Thus, the tool 10 can be subject further processing with excellent effects.
At S14, the tool 10 is subject to surface treatment to provide the surface thereof with a protection layer.
Referring to
Referring to
At S15, the tool 10 is subject to printing to provide a mark 30 on a portion of the protection layer.
Referring to
Referring to
The mark 30 may include at least one letter, numeral, character or pattern. The mark 30 is in a color that is in strong contrast to the layer of anodizing 20 or black dying 20A. Therefore, the mark 30 looks clear amid the layer of anodizing 20 or black dying 20A.
At S16, the tool 10 is electroplated with a transparent layer 40 on the remaining portion of the layer of anodizing 20 or black dying 20A. As electroplating only occurs on metal, the electroplating only occurs on the layer of anodizing 20 or black dying 20A, i.e., the mark 30 is not covered by the transparent layer 40.
The transparent layer 40 glistens in light. Moreover, the transparent layer 40 protects the layer of anodizing 20 or black dying 20A from rust. In addition, the thickness of the transparent layer 40 is much larger than that of the mark 30. A large portion of the transparent layer 40 must be worn away before the mark 30 can be worn. Thus, the transparent layer 40 protects the mark 30 from peeling in collision or rubbing. Hence, the clear visibility of the mark 30 amid the layer or anodizing 20 or black dying 20A lasts for a long period of time.
The tool 10 exhibits at least two advantages. At first, the mark 30 looks clear amid the layer of anodizing 20 or black dying 20A since they are in strong contrast to each other. Secondly, the clear visibility of the mark 30 amid the layer of anodizing 20 or black dying 20A lasts long since both of the mark 30 is placed much deeper than the transparent layer 40.
The present invention has been described via the detailed illustration of the embodiments. Those skilled in the art can derive variations from the embodiments without departing from the scope of the present invention. Therefore, the embodiments shall not limit the scope of the present invention defined in the claims.