This invention relates generally to production of customized decorative art, and, more particularly, to a method for efficiently producing art in separate pieces.
Current customized artwork products offered for sale have extended manufacturing lead times. Mass producers of the artwork are unable to keep inventory of customized artwork. All pieces are cut, prepped, and finished only after the order is placed. Hobbyist type businesses are able to offer shorter lead times, but they are unable to meet the volume requirements of mass production.
The proliferation of computer numerical controlled machines has made it easier for producers to form artwork. Such machines include sheet metal cutting machines, into which ornate decorative patterns may be cut and etched. However, finishing operations in which the workpiece is treated to form a protective and/or decorative coating, require different equipment and a different skill set. Many producers outsource finishing to businesses who have the equipment and expertise to perform the operation.
Thus, when a customer orders a customized artwork product, the manufacturer forms and finishes the entire product, the non-customized portion as well as the customized portion, typically out of the same material. Finishing takes considerable time. Many producers outsource finishing, which introduces additional shipping delays. Depending upon backlog, months may pass from the time a customer places an order until order fulfillment.
Production of artwork one-at-a-time to fulfill an order not only wastes time, but increases cost. Economies of scale are lost in such productions.
An economical method that streamlines the manufacturing process from months to hours is needed. The method should facilitate the production and delivery of finished artwork suitable for display indoors and outdoors in most environments.
The invention is directed to overcoming one or more of the problems and solving one or more of the needs as set forth above.
To solve one or more of the problems set forth above, in an exemplary implementation of the invention, a method of producing customized artwork includes forming a plurality of backdrops. Each backdrop of the plurality of backdrops features an ornamental design formed in a metal sheet. Each backdrop also has a mounting area. The backdrops are not customized for users. Each backdrop of the plurality of backdrops has surfaces. The backdrops are finished. Finishing entails treating the surfaces of each backdrop of the plurality of backdrops. An order is received for a customized artwork. The customized artwork includes a selected backdrop and a customized component. The selected backdrop is one backdrop of the plurality of backdrops. The customized component is produced from another metal sheet (i.e., a metal sheet different from the sheet from which the selected backdrop was produced). The customized component features a second ornamental design formed in the other metal sheet. The produced customized artwork is delivered.
The plurality of backdrops may be stored as inventory, after they are formed. Thus, customers may select from a plurality of backdrops in inventory.
The customized artwork may be delivered disassembled or assembled. The method may entail determining whether to assemble the customized artwork by fastening the customized component to the mounting area of the selected backdrop, before delivering the customized artwork.
The plurality of backdrops may be formed by cutting and/or engraving an ornamental design in the metal sheet for each backdrop. Similarly, the customized component may be produced by cutting and/or engraving the second ornamental design in the other metal sheet for the customized component.
In a preferred implementation, the method includes a step of determining whether to insulate the customized component from the selected backdrop to hinder galvanic corrosion. The step of determining whether to insulate the customized component from the selected backdrop is performed after receiving the order for the customized artwork. A first anodic index is determined for the selected backdrop. A second anodic index is determined for the customized component. The difference between the first anodic index for the selected backdrop and the second anodic index for the customized component is determined. If the difference exceeds a determined amount insulation is provided. The insulation includes an insulator disposed between the selected backdrop and the customized component. The insulation may also include an insulating flanged bushing for each fastener used to fasten the customized component to the mounting area of the selected backdrop. The insulating flanged bushing insulates each fastener from the backdrop, or insulates each fastener from the customized component.
The foregoing and other aspects, objects, features and advantages of the invention will become better understood with reference to the following description, appended claims, and accompanying drawings, where:
Those skilled in the art will appreciate that the figures are not intended to be drawn to any particular scale; nor are the figures intended to illustrate every embodiment of the invention. The invention is not limited to the exemplary embodiments depicted in the figures or the specific components, configurations, shapes, relative sizes, ornamental aspects or proportions as shown in the figures.
A method according to principles of the invention produces customized artwork comprised of a backdrop and a trim. Backdrops are produced, finished and inventoried in advance. Trims are specified by customers at the time of orders. With the backdrop in inventory, only the trim must be produced to fulfill an order. The trim is produced of a material that does not require finishing or that is limited to rapid on-site finishing. If the trim and backdrop risk galvanic corrosion, insulation may optionally be included. The artwork may be delivered assembled or disassembled.
With reference to
In step 105 of the exemplary process, the backdrop is formed. In the case of a backdrop formed from sheet metal, the backdrop may be formed by cutting. The cutting may be performed with a CNC machine, such as a CNC milling machine, a CNC plasma cutter, a CNC laser cutter, or a CNC water jet cutter. Codes for controlling operation of the cutter are generated by computer-aided manufacturing (CAM) software. The design created in step 100 is imported into or opened in the CAM software. The CAM software produces the codes (e.g., G-codes and M-codes), as a sequence of instructions, for controlling operation of the machine and achieving cuts according to the design.
In step 110 of the exemplary process, the backdrop is finished. Metal finishing may encompass any of a range of processes. These processes are varied, complex and involve chemical and physical processing steps. Many consume considerable time and require careful administration for safety and legal compliance. Nonlimiting examples of finishes are electroplating, painting, electrophoretic coating, powder coating, conversion coating (e.g., passivation, phosphating, anodizing, mechanical plating) and galvanizing.
In step 115 of the exemplary process, the finished backdrop is placed in inventory for sale. Maintaining an inventory achieves several objectives. Inventory substantially reduces time lags present in the supply chain for customized artwork. Inventory ensures capacity to meet seasonal and unexpected demand. Economies of scale are achieved because it is less costly to mass produce a particular backdrop than it is to produce one backdrop at a time as needed. Additionally, inventoried backdrops may appreciate as raw material costs increase and the business of producing and selling customized artwork grows.
The artwork is offered for sale in step 120 of the exemplary process. This step may entail advertising, marketing and promotion of the customized artwork. Pricing or estimated pricing and examples of prior customized artwork may be presented to inform and inspire potential buyers. At this step, the backdrop, which comprises a substantial portion, and in most cases the majority of the artwork is formed, finished and ready for immediate shipping.
In step 125 of the exemplary process, an order for customized artwork is received. The order specifies at least a backdrop and trim. The specification of the trim may include a detailed dimensioned scaled drawing, such as a CAD or vector graphics drawing. The drawing may be produced by the buyer, or the seller or a third party in collaboration with the buyer. The specification of the trim may also include material specifications. In a preferred implementation, the trim is produced using a material that does not require finishing or further finishing. As finishing operations can appreciably delay order fulfillment, further finishing of the trim is to be avoided.
In step 130 of the exemplary process, the trim is formed. The piece is preferably formed of a material that will not rust under normal conditions, such as aluminum or stainless steel. If the piece is metal and will be exposed to corrosive conditions, such as an environment exposing the piece to sulfides or chlorides, e.g., chlorides in salt water, then a corrosion resistant finish is recommended. In another embodiment, the material from which the trim is formed may be pre-finished, leaving only cut edges vulnerable to corrosion if the piece is displayed in a corrosive environment. In another embodiment, the trim is composed of a plastic. The trim may include mounting features (e.g., flanges and/or holes) for attaching the piece to a backdrop.
In the case of a trim formed from sheet metal, the piece may be formed by cutting. The cutting may be performed with a CNC machine, such as a CNC milling machine, a CNC plasma cutter, a CNC laser cutter, or a CNC water jet cutter. Codes for controlling operation of the cutter are generated by computer-aided manufacturing (CAM) software. The design specified in step 125 is imported into or opened in the CAM software. The CAM software produces the codes (e.g., G-codes and M-codes), as a sequence of instructions, for controlling operation of the machine and achieving cuts according to the design.
In the case of a trim formed from plastic or metal, the piece may be formed by additive manufacturing (e.g., 3D printing) or milling.
In step 135 of the exemplary process, the backdrop is retrieved from inventory. The retrieved backdrop is the finished backdrop required to fulfill the order received in step 125. Upon retrieval, the inventory for the retrieved backdrop is reduced by one.
In step 140 of the exemplary process, a determination is made whether to assemble the artwork. Assembly entails attaching the trim to the backdrop. The artwork may be delivered assembled or disassembled. Whether to assemble may be a customer's option or a matter of policy for a seller.
If assembly is required before delivery, the artwork is assembled before delivery as in step 145. Assembly may entail fastening the trim to the backdrop. By way of example and not limitation, mechanical fasteners (screws, nuts and bolts, rivets) or welds may be used.
In one implementation, assembly may optionally include steps for determining if the artwork requires insulation. Such steps are described below with reference to
In step 150 of the exemplary process, the artwork is delivered. If the artwork has been assembled in step 145, the artwork is delivered as assembled. If the artwork has not been assembled in step 145, the artwork is delivered unassembled. Hardware such as mechanical fasteners and insulators may be included with the artwork components.
In contrast, if the finished surface of the backdrop and the trim are comprised of different (i.e., dissimilar) metals, then control proceeds to step 205. By way of illustration, if the backdrop is unfinished stainless steel and the custom component is aluminum, then the risk of galvanic corrosion is relatively high. In such case, control proceeds to step 205.
In step 205, a determination is made whether a limit has been exceeded. The limit is the maximum difference between the anodic indices for the different metals. Compatibility of different metals may be predicted by consideration of their anodic indices. An anodic index is a measure of the electrochemical voltage that will be developed between the metal and gold. The relative voltage of a pair of dissimilar metals is the difference between their anodic indices. To reduce risk of galvanic corrosion, the difference should be less than the limit. By way of example and not limitation, the limit may set at a value from 0.05 to 0.50V, or more preferably, from 0.10 to 0.25V, or 0.10V, 0.15V, 0.20V, or 0.25V.
The limit may be fixed or variable. In the latter case, the limit may determined based upon environmental conditions. Artwork stored outdoors is more susceptible to galvanic corrosion than artwork kept indoors. Artwork stored in a humid environment is more susceptible to galvanic corrosion than artwork kept in a dry environment. Artwork stored near salt water as in a seaside community is much more susceptible to galvanic corrosion than artwork kept away from a salt water environment. Thus, the limit may be set according to average precipitation, humidity and proximity to salt water. Illustratively, the limit for artwork to be displayed outdoors in a seaside community may be 0.05V, while the limit for artwork to be displayed outdoors in an arid desert community may be 0.25.
Insulation will not cause harm if it is not needed. Thus, a producer may decide to provide insulation in all cases or may set the limit low (e.g., 0.01V).
If the difference between the anodic indices for the different metals exceeds the applicable limit, then insulation may be provided as in step 210. If the difference between the anodic indices for the different metals does not exceed the applicable limit, then insulation may be omitted as in step 215.
In the example described above with reference to
While an exemplary embodiment of the invention has been described, it should be apparent that modifications and variations thereto are possible, all of which fall within the true spirit and scope of the invention. With respect to the above description then, it is to be realized that the optimum relationships for the components and steps of the invention, including variations in order, form, content, function and manner of operation, are deemed readily apparent and obvious to one skilled in the art, and all equivalent relationships to those illustrated in the drawings and described in the specification are intended to be encompassed by the present invention. The above description and drawings are illustrative of modifications that can be made without departing from the present invention, the scope of which is to be limited only by the following claims. Therefore, the foregoing is considered as illustrative only of the principles of the invention. Further, since numerous modifications and changes will readily occur to those skilled in the art, it is not desired to limit the invention to the exact construction and operation shown and described, and accordingly, all suitable modifications and equivalents are intended to fall within the scope of the invention as claimed.
Number | Name | Date | Kind |
---|---|---|---|
2032039 | Ballou | Feb 1936 | A |
4125655 | Kanzelberger | Nov 1978 | A |
5343646 | Cobb et al. | Sep 1994 | A |
5428914 | Whitehouse | Jul 1995 | A |
5649220 | Yosefi | Jul 1997 | A |
7164490 | Manico et al. | Jan 2007 | B2 |
7656402 | Abraham et al. | Feb 2010 | B2 |
7877909 | Hagen et al. | Feb 2011 | B1 |
8050796 | Hagen et al. | Nov 2011 | B1 |
8413357 | Hagen | Apr 2013 | B1 |
8574714 | Giori | Nov 2013 | B2 |
8832977 | Salen | Sep 2014 | B1 |
9728109 | Weisburn | Aug 2017 | B1 |
9849844 | Hannel | Dec 2017 | B2 |
10304107 | Tuchler et al. | May 2019 | B2 |
20020198892 | Rychel | Dec 2002 | A1 |
20070283601 | Peterson | Dec 2007 | A1 |
20080057330 | Boushey | Mar 2008 | A1 |
20110030253 | Fahey | Feb 2011 | A1 |
20110282476 | Hegemier | Nov 2011 | A1 |
20130140746 | Heverly et al. | Jun 2013 | A1 |
20170031346 | Kessinger | Feb 2017 | A1 |
20170057268 | Surber | Mar 2017 | A1 |
20170087873 | Freybler et al. | Mar 2017 | A1 |
20200062026 | Thomson | Feb 2020 | A1 |
Number | Date | Country | |
---|---|---|---|
20220072896 A1 | Mar 2022 | US |