This invention relates to methods for measuring physiological stress and more particularly to such methods involving an assessment of sympathetic and parasympathetic activity.
Physiological stress exists in two varieties: 1) mental, often caused by worry, fear, and anxiety, and 2) physical, in response to exertion, confinement, and general body discomfort. Regardless of the source of stress, it affects the body through the same mechanism, increasing heart rate, cortisol and epinephrine production, allowing us to escape danger or giving us the necessary energy to complete a hard task. Prolonged stress has many negative effects however. It has been linked to mental illness, heart problems, immune system deficiencies, accelerated cell aging, oral health problems, anxiety, depression, and other serious diseases. Acute stress, on the other hand, is generally not harmful, but may be a good indicator of a person's physiologic state. For example, low fetal heart rate variability (a consequence of physiological stress) has been correlated to birthing problems and is routinely measured during childbirth.
Stress can be defined as the dominance of the sympathetic branch of the autonomic nervous system (ANS) over the parasympathetic branch. This is a valid and intuitively pleasing definition because sympathetic activity results in physiological changes that we associate with stressful situations: increases in heart rate, vasoconstriction, etc., and parasympathetic activity has the opposite effect and is generally highest during rest (see
Thus, to estimate a person's stress level, one needs an estimate of his or her autonomic system function. Furthermore, in order for the stress estimation method to be immediately useful for patient monitoring, these estimates must be obtainable in real time or with a reasonable (at most 30 second) lag. However, stress estimation over longer time periods (minutes or hours) can also be a useful diagnostic, so this invention covers methods for doing both.
Autonomic nervous system function can be measured in a variety of ways. A direct method would involve placing microelectrodes in the vicinity of the vagus and the sympathetic nerves in order to record the electrical activity of both of these autonomic nervous system branches. This method suffers from the highly invasive procedure and difficult implementation, both of which make it impractical for use on human subjects. Sarbach et al. (U.S. Pat. No. 7,049,149) describe an alternative method wherein the subject's stress state is estimated via chemical analysis of his or her exhalation. A similar analysis could be done on the subject's blood, looking for certain hormones that are released by sympathetic activity (cortisol, adrenaline, etc.). Sympathetic and parasympathetic activity can also be estimated by looking at the frequency spectrum of a long sequence of RR intervals, as described in [1]. The numbers in brackets refer to the references appended hereto, the contents of which are incorporated herein by reference.
The method of the invention for determining physiological stress involves detecting one or more physiologic signals in a subject, processing the one or more physiologic signals to obtain one or more processed signals, and estimating from the one or more processed signals the subject's stress level. The one or more physiological signals may include the electrocardiogram, or the instantaneous lung volume or other signal reflecting respiratory activity, or the arterial blood pressure or other signal reflecting cardiovascular activity.
One preferred embodiment of the invention involves detecting one or more physiologic signals in a subject and processing the physiologic signal to obtain a sequence of intervals related to time intervals between heartbeats. In a preferred embodiment the subject's stress level is estimated from signals derived from the sequence of intervals. In another preferred embodiment, the sequence of intervals is evaluated in real time. In yet another embodiment, the sequence of intervals is evaluated in a longer time window. The physiologic signal may be an electrocardiogram. A suitable time window is on the order of one to ten seconds.
In a preferred embodiment, the sequence of intervals is the actual inter-beat interval. The processed signal derived from the sequence of intervals may also be the instantaneous rate of change of heart rate. The processed signal derived from the sequence of intervals may also be the second difference of heart rate. In yet another embodiment, the processed signal derived from the sequence of intervals is the mean of the absolute value of the first difference of the intervals within a short window. In yet another embodiment, the processed signal derived from the sequence of intervals is the percent change in the inter-beat interval per unit time. The processed signal derived from the sequence of intervals may also be a linear correlation coefficient of a moderately sized window of inter-beat intervals. A suitable moderately sized window is approximately 20 seconds. The processed signal derived from the sequence of intervals may also be shot noise or spectral curvature.
In a preferred embodiment, the sequence of intervals is used to estimate the magnitude of sympathetic and parasympathetic activity. In this aspect, physiological stress is determined from a function of the sympathetic and parasympathetic activity. In a preferred embodiment, stress is the ratio of sympathetic to parasympathetic activity. In another embodiment, stress is estimated as a linear combination of sympathetic and parasympathetic activity.
The method of the invention for determining physiological stress involves detecting one or more physiologic signals in a subject, processing the one or more physiologic signals to obtain one or more processed signals, and estimating from the one or more processed signals the subject's stress level. The one or more physiological signals may include the electrocardiogram, or the instantaneous lung volume or other signal reflecting respiratory activity, or the arterial blood pressure or other signal reflecting cardiovascular activity.
In one preferred embodiment the present invention uses a measure of the heart's electrical activity (for example, from an electrocardiogram or any method that can record the occurrences of heart beats) in order to estimate the desired sympathetic and parasympathetic indices. This approach is valid because the vagus nerve impinges on the sinoatrial node and the sympathetic nerves synapse on the sinoatrial node as well as the surrounding myocardium. The activity of these neurons directly affects the pacemaker function of the sinoatrial node as well as the conductive properties of the surrounding myocardium, thereby effecting changes in the heart's inter-beat intervals. Inter-beat intervals will be referred to as RR intervals, as they are typically calculated by measuring the time between successive QRS complexes on an ECG record. By measuring the timing between contractions of the heart, one can estimate parasympathetic and sympathetic nervous activity. This approach is also more practical than the previous art because it does not explicitly require a specialized apparatus to collect data, and can use, but is not confined to, the standard ECG available in all hospitals.
It has been shown that the cardiovascular system can be described by transfer functions that relate instantaneous lung volume, heart rate, and arterial blood pressure in a closed-loop fashion as shown in
In addition to the CSI methods mentioned above, we describe a series of processed signals that can be calculated from the recorded RR intervals (these signals will be referred to as S1-S6, shot noise, and spectral curvature).
The following is a list of processed signals that can be derived from the RR interval sequence, all of which have shown a correlation with parasympathetic or sympathetic dominance:
We also describe methods for correlating these signals to the level of sympathetic and parasympathetic activation, as well as to a measure of stress. We also describe a method for estimating autonomic activation on longer stretches of data, using an autocorrelation method. We also describe a Hidden Markov Model approach for quantifying the relationship between instantaneous heart rate and instantaneous lung volume (both obtainable from ECG). By solving for the hidden states by a method such as the maximum a posteriori estimate, we can obtain a time course of sympathetic and parasympathetic activation. We also describe an integrate and fire model of the sinoatrial node that is affected by inputs from the sympathetic and parasympathetic nerves. The model can be solved analytically or via simulation to yield the expected distribution of RR intervals as a function of parasympathetic tone. We also describe a more complicated model of the sinoatrial node that uses differential equations to calculate the change in membrane potential (similar to the Hodgkin-Huxley model) and that includes inputs from sympathetic and parasympathetic nerves. This model can be used to empirically derive the RR interval distributions for various levels of autonomic nervous system function and these distributions can be fit to the observed data to estimate autonomic nervous system function in a particular subject. It may also be possible to relate the results of this model to the electrical activity that is picked up by a standard ECG, and to estimate stress using the entire ECG waveform rather than just the RR intervals. We also describe methods for estimating sympathetic tone from parasympathetic estimates and observed heart rate using simple and complicated functions. We also describe methods for quantifying the stress level from the parasympathetic and sympathetic indices.
All three panels show that a similar infinite data set extrapolated value is obtained. The method with the lowest mean squared error was chosen when representing results.
In one preferred embodiment this invention relates to the method of estimating physiological stress in a subject by analysis of intervals between heart beats. The signals considered are the actual interval, the instantaneous slope in heart rate, the second difference of heart rate, the mean of the absolute first difference within a window, the normalized interval, the correlation coefficient of an interval series within a window, a shot-noise estimate using short autocorrelations, the spectral curvature of an extended autocorrelation, cardiovascular system identification, hidden Markov model, integrate and fire model, and complex electrochemical model. These signals can be combined to reduce noise, and can be used to estimate the amount of stress.
The method of the invention, in one aspect, includes detecting a physiologic signal in a subject and processing this signal to obtain a sequence of intervals corresponding to time intervals between heart beats. The relation of these inter-beat intervals is evaluated in real time or in longer time-windows to provide an estimate of the subject's stress level. In a preferred embodiment, the physiologic signal is a real-time electrocardiogram and the time-windows are on the order of one to ten seconds. Regardless of the source of the physiologic signal, these embodiments include using the actual inter-beat intervals, referred to as signal 1 or S1, as an indication of parasympathetic tone, with larger intervals corresponding to higher parasympathetic activation. S1 results are shown in
In yet another embodiment, the instantaneous slope in heart rate, which will be referred to as S2, can be calculated according to the equation
In this equation, HRk is the instantaneous heart rate in beats per minute, calculated as 60/RRk, where RRk is the kth inter-beat interval measured in seconds, k is an index corresponding to the chronological order of the inter-beat intervals, and S2k is the value of signal 2 at index k. In another embodiment, the normalizing denominator of the rightmost equation may be absent or replaced by a constant. In yet another embodiment, the raw inter-beat intervals may be used instead of the instantaneous heart rate. It has been shown that S2 is directly proportional to the strength of parasympathetic activity, as seen in
In yet another embodiment, the second difference of the inter beat intervals, referred to as S3, can be calculated according to the equation
In this equation, HRk and k have the same meaning as defined above for S2, and S3k is the value of S3 at the time corresponding to index k. In another embodiment, the normalizing denominator may be absent or replaced by a constant. In yet another embodiment, the raw inter-beat intervals may be used instead of the instantaneous heart rate. In yet another embodiment, a particular value of S3 may be calculated using more than 3 consecutive HR values. S3 has been shown as directly proportional to the magnitude of parasympathetic activity, as seen in
In yet another embodiment, the mean absolute first difference, referred to as S4, can be obtained according to the equation
In this equation, n is the size of the relevant window, on the order of 5 to 10 inter-beat intervals, and RR and k are defined as above. S4k is the value of S4 at the time corresponding to the kth time index. In another embodiment RR may be replaced with HR. S4 has been shown to be directly proportional to parasympathetic tone, as shown in
In yet another embodiment, the inter-beat interval differences can be normalized such that they represent a percent change per unit time. This signal is referred to as S5, and is calculated according to the equation
In this equation, RR and k are defined as above, and S5k is the value of S5 at the time corresponding to the kth time index. In another embodiment, HR may be substituted for RR. In yet another embodiment, the normalizing denominator RRk+1 may be absent or replaced by a constant. S5 has been observed to directly correlate to the strength of parasympathetic activation, as illustrated in
In yet another embodiment, the linear correlation coefficient of a sequence of inter-beat intervals, referred to as S6, can be calculated according to
In this equation, cov(.) is the covariance of the two arguments and σ is the standard deviation of the subscripted argument. The X and R vectors are defined on the right of the equation. N is the number of RR intervals that fit within a specified time window, on the order of 20 seconds. In yet another embodiment, the linear correlation coefficient may be replaced by the mean squared error around a higher-order fit of the same two sequences. In another embodiment, the goodness-of-fit may be calculated in another way (for example absolute error). S6 has been shown to weakly correlate to the strength of sympathetic activity, as seen by the data in
In yet another embodiment, the degree of randomness, termed shot noise, can be calculated from the inter-beat interval series in short windows containing about 5 RR intervals. Shot noise is calculated as the difference between the O-lag value of the autocorrelation of the short RR sequence and the linear extrapolation to lag 0 of the lag 1 and lag 2 values of the autocorrelation, as illustrated in
In yet another embodiment, an unconventional autocorrelation function can be calculated from the inter-beat interval sequence. To compute this autocorrelation, a short window of RR intervals is convolved with a time-reversed longer window of RR intervals, both windows being taken from the entire RR interval sequence such that the middle value in each window corresponds to the same sample in the RR interval sequence. The shorter window can contain on the order of 5 intervals and the longer window can contain on the order of 30 intervals. In another embodiment, the frequency spectrum of this autocorrelation function can be calculated in any way known to practitioners of the art, such as, but not limited to, the fast Fourier transform. In yet another embodiment, the average spectral energy can be calculated in three frequency bins. The three frequency bins may contain frequency components on the approximate ranges 0 to 0.04 Hz, 0.04 to 0.125 Hz, and 0.125 to 0.4 Hz. In yet another embodiment, the second difference of the three average energy values in the said frequency bins can be calculated to yield a single value representing the spectral curvature of the RR sequence corresponding to the time on which the short and long windows were centered. The spectral curvature has been observed to have large negative values when parasympathetic and sympathetic activity are normal, and to have values close to zero when either sympathetic or parasympathetic branches dominate, or if both are eliminated, as shown in
In another embodiment, the raw value of S1-S6 is transformed to a value of parasympathetic activation by means of a parasympathetic ratio. This ratio can be computed by dividing the value of a particular signal in a parasympathetically dominated intervention (such as supine propranolol) by the sum of that same value plus the value of that same signal in a sympathetically dominated intervention (such as standing atropine). This ratio would give a value of 1 if a particular signal matches a pure parasympathetic state, a value of 0 if the signal matches a purely sympathetic state, and an intermediate value for combinations between these two extremes. Calculated parasympathetic ratio functions for S1-S6 are shown in
In another embodiment, an additional physiologic signal may be recorded, or the said signal may be derived from the electrocardiogram as described in the literature. The said additional signal is the subject's instantaneous lung volume, synchronized in time to the electrocardiogram. In another embodiment, weighted principal component regression cardiovascular system identification (WPCR CSI), as described by Xinshu Xiao, can be used to calculate the parasympathetic and sympathetic indices from the transfer function relating instantaneous lung volume to heart rate [7]. In one embodiment, the WPCR CSI method can be run on an entire data set of approximately five minutes or longer to obtain a steady-state estimate of autonomic system function. In another embodiment, the said method could be run on contiguous segments of data regardless of segment length. For example, WPCR CSI was run on entire portions of sleep apnea data, with each sleep segment and each apnea segment being treated as a single data trace. As shown in
In yet another embodiment, the said method can be run on shorter (approximately 2 minutes of data), overlapping data segments in order to obtain a time-dependent estimate of autonomic system function. The result of running CSI on short windows of data is shown in
In yet another embodiment, the shot noise can be calculated on an entire data record of RR intervals at least five minutes in duration. This method is useful for estimating parasympathetic tone during a long and unchanging intervention; for example, if the subject is lying in the intensive care unit without moving or responding. As seen in
In yet another embodiment, the needed signals are the instantaneous heart rate, which is obtainable from the electrocardiogram or the RR interval series, and the instantaneous lung volume, also obtainable from the electrocardiogram or directly, and autonomic nervous system function is estimated assuming a Hidden Markov Model. The said model involves the parameterization of the instantaneous lung volume to heart rate transfer function such that it is fully described by two values: a positive parasympathetic peak, and a negative sympathetic peak, as shown in
In this equation Sn is the state at time index n, is the state at the previous time index, ΔP and ΔS are the change in the parasympathetic and sympathetic values, respectively, between the previous state and the current state, Δt is the change in time in seconds between the time at index n−1 and the time at index n, and σp and us are the parameters that define the propensity of the parasympathetic and sympathetic values to change in a unit of time. To calculate the probability of observing a particular heart rate given an “actual” heart rate computed as described above, we assume a Gaussian distribution having a mean equal to the mean observed heart rate at the particular time and standard deviation equal to the standard deviation of instantaneous heart rates in a short (approximately 5 seconds) window of the preceding values of instantaneous heart rate. The probability of observing the heart rate is then given by:
In this equation, HRn is the observed heart rate at time corresponding to index n, σn and μn, are the standard deviation and mean at time n, estimated as explained above, and HRncalc is the “true” or “calculated” heart rate at time n. Finally, it should be noted that time must be discretized into points with a desirable resolution (such as 0.5 or 1 second between samples) and the sympathetic and parasympathetic values must also be on a predefined, quantized range. To obtain the maximum a posteriori estimate in a reasonable amount of time, the Viterbi algorithm, as defined in the communication theory literature is employed. As of now, the parasympathetic and sympathetic values obtained using this approach do not exactly match expected values, but the theory is sound and further experimentation with the parameters and guiding functions is expected to yield improved results. In another embodiment, the particular equations listed may be altered in particular form, while maintaining the main anatomical features discussed above.
In yet another embodiment, an integrate and fire model of heart beat generation is used to construct expected RR interval probability distribution functions, which are compared against an empirical RR interval histogram constructed from approximately five minutes of data or more in order to determine sympathetic and parasympathetic activity. The integrate and fire model can be described by the following equation:
In this equation, s (t) is a Poisson process describing sympathetic activity, where each event has amplitude AS and the events occur with an average rate λs, p(t) is a Poisson process describing parasympathetic activity, where each event has amplitude Ap and an average rate. λp. c is a constant that determines the intrinsic average heart rate in the absence of autonomic function. tk and tk+l are the times corresponding to the current heartbeat and the next consecutive heartbeat. In essence, once the integral of the constant plus the positive contributions of the sympathetic system and the negative contributions of the parasympathetic system surpass the threshold of 1, a heart beat occurs. The goal of this approach is to generate inter-beat interval probability distribution functions based on said model that correspond to various values of sympathetic and parasympathetic activity, as defined by the free parameters λs, As, λp, and Ap, and then to find which set of parameters results in the best match between the calculated probability density function and the actual observed inter beat interval histogram from the physiological recording. In one embodiment, this would involve constructing a family of distributions through numerical simulation experiments with the given model and simply comparing some error function between the computed and observed distribution functions. In another embodiment, the analytic form of the expected distribution, parameterized by λs, As, λp, Ap, and c, is calculated and the parameter values are assigned by comparison to physiologic data. In one embodiment, the value for the constant c can be determined empirically from double pharmacologic blockade experiments, in which heart beat events are recorded in subjects following the administration of drugs that inactivate both the parasympathetic and the sympathetic nervous activity. In yet another embodiment, we assume that contributions from the sympathetic system are negligible due to sympathetic blockage by drugs or by post-processing of the heart beat signal by a process such as but not limited to subtraction of linearly predicted values, so the analytical form of the probability distribution function for this case is represented by the equation:
In this equation, k is any integer and k0 is the particular value that k takes on. The parameters c, λp, and Ap are as defined above. This distribution can be fit to the RR interval histogram recorded from a patient under sympathetic blockade conditions in any way familiar to practitioners of the art (for example, by nonlinear least squares minimization, comparison to a family of functions generated with all possible parameter combinations on a particular range, or computation of higher order statistics like the mean, standard deviation, kurtosis, etc.). The above procedures would produce an estimate of parasympathetic tone.
In yet another embodiment, the sympathetic tone is be estimated using the value of parasympathetic tone calculated as in any of the above embodiments and instantaneous heart rate via the equation HR(t)=HR0(1+s(t) p(t)), where HR(t) is the heart rate at time t, HR0 is the baseline heart rate in the absence of autonomic nervous function, s(t) is the unknown value of sympathetic activity at time t, and p(t) is the estimated value of parasympathetic activity at time t. In another embodiment, the function HR(t)=HR0+k1s(t)−k2P(t) may be used, where k1 and k2 are some constant weighting factors. In yet another embodiment, a nonlinear function of s(t) and p(t) may be used. In yet another embodiment, the sympathetic activity at a particular time may be known, and the parasympathetic activity may be unknown, in which case the above equations can also be solved to produce the unknown quantity.
In yet another embodiment, a more physiologically-motivated mathematical model of the sinoatrial node is used to predict the inter-beat interval distribution for various levels of sympathetic and parasympathetic activity. The basic sinoatrial node model has been described by Demir et al. [8], and would need to be modified to include sympathetic and parasympathetic inputs. In one embodiment, the sympathetic contribution is in the form of an inward, depolarizing current. The magnitude of this current is computed by convolving a Poisson process describing sympathetic activity by the sympathetic nervous activity-to-heart rate transfer function measured and described by Berger et al. [9]. In this embodiment, the sympathetic Poisson process is parameterized by a mean rate and can be generated by computer simulation. In another embodiment, the form of the sympathetic contribution is that of a change in the sodium channel conductance as well as release of intracellular calcium ions, also calculated based on the measurements of Berger et al. and the model of Demir et al. In yet another embodiment, the parasympathetic contribution is in the form of an outward, hyperpolarizing current. The magnitude of this current is computed by convolving a Poisson process describing parasympathetic activity by the parasympathetic nervous activity-to-heart rate transfer function as described by Berger et al. In this embodiment, the parasympathetic activity Poisson Process is parameterized by a parasympathetic average rate and is generated by computer simulation. In another embodiment, the form of the parasympathetic contribution is that of a change in the sodium and potassium channel conductances, and removal or sequestering of the intracellular calcium stores, as can be determined based on the combined works of Demir et al. and Berger et al.
In another embodiment, this mathematical model is further utilized to simulate sinoatrial node activity, and from this, the heart beat events are determined. These heart beat events are further analyzed to yield a library of unique probability distribution functions of RR intervals for various values of sympathetic and parasympathetic activity on a predefined range, such as but not limited to 0 Hz to 10 Hz for each. In another embodiment, the RR interval histogram obtained from at least five minutes of inter heart beat interval data is compared to this entire library of model distributions and the best match is chosen as the representation of actual parasympathetic and sympathetic nervous activity. In yet another embodiment, the library of model distributions can be stored in the form of a generalized equation that describes the distributions, rather than storing each distribution separately.
In yet another embodiment, the above model can be expanded to include spread of depolarization across a three-dimensional computational model of the heart. This signal can then be processed to yield the expected electrocardiogram signal. The simulated electrocardiogram signal can then be processed to understand whether sympathetic or parasympathetic activity can be measured directly from fine fluctuations in the electrocardiogram waveform. This method would allow the direct, fine time resolution measurement of the ANS parameters of interest.
In yet another embodiment, the sympathetic and parasympathetic tone values obtained as explained in any of the above embodiments are further processed to yield an estimate of physiological stress. In one embodiment, this can be done by taking the ratio of sympathetic to parasympathetic activity: Stress=S/P, where S is the value of sympathetic activity and P is the value of parasympathetic activity. Given the definition of stress as the dominance of sympathetic over the parasympathetic branches, higher values of this ratio would correspond to more stressful states. In another embodiment, stress can be quantified as the difference between sympathetic and parasympathetic activity: Stress=S-P. This definition also implies that sympathetically dominant states would give higher values for the calculated stress. In yet another embodiment, the S and P values in the above can be modified in a linear way: Stress=aS−bP+c, where a, b, and c are scaling constants determined empirically from patient data in control and pharmacologic blockade conditions. For example, S and P values obtained under control conditions (sitting, relaxed patient) can be assigned to correspond to a Stress value of 0, S and P values obtained under parasympathetic blockade can be assigned a Stress value of 1, and S and P values obtained under sympathetic blockade can be assigned a Stress value of −1. These three equations can be solved to yield the correct values of a, b, and c. In this embodiment, the a, b, and c values would be obtained from a group of patients and averaged to determine the best set of parameters to use on any successive subject without having to first go through this calibration step.
In yet another embodiment, any combination of one or more of the above signals (including signals derived from the intervals between heart beats as well as the instantaneous lung volume itself or other signals which reflect respiratory activity, the arterial blood pressure signal itself or other signals which reflect cardiovascular activity, and the like) are detected and processed to estimate stress or used to reduce the noise of the stress estimate. CSI methods described above may are well adapted to process multiple physiologic signals such as these and in this preferred embodiment may be applied to obtain an estimate of physiologic stress.
In another preferred embodiment the estimate of physiologic stress is used to determine whether a subject is lying (deceitful) or truthful when speaking spontaneously or when answering one or more questions.
In another preferred embodiment the estimate of physiologic stress is used to monitor the status of a patient with a medical condition which would benefit from such monitoring. Such a patient might be in an intensive care or critical care unit, undergoing exercise testing, or be an ambulatory patient with remote monitoring of his/her physiologic signals.
It is recognized that modifications and variations of the present invention will occur to those skilled in the art and it is intended that all such modifications and variations be included within the scope of the present invention.
This application claims priority to provisional application Ser. No. 60/851,241 filed Oct. 12, 2006, the contents of which are incorporated herein by reference.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2007/081081 | 10/11/2007 | WO | 00 | 12/21/2009 |
Number | Date | Country | |
---|---|---|---|
60851241 | Oct 2006 | US |