The present invention relates to a method for measuring the influence of a transparent pane, e.g., a windshield, and an arrangement for performing the method.
A windshield, also referred to as a front window, is a pane, regularly made of glass, e.g., laminated glass, that allows the driver of a vehicle to see forward. At the same time, the windshield provides the driver with protection from wind, weather and particles in the airflow. The method described below is not limited to front windows but can likewise be used for camera systems behind rear windows or other vehicle windows. Below, the case of a front window is considered as a typical application.
When light shines or radiates through a windshield, it is refracted by the transparent medium. Due to the curvature of the windshield itself as well as variations in thickness, curvature or local changes in the material properties, this refraction and thus the influence of the windshield on the optical path are difficult to predict. Although individuals often estimate this influence to be minor, it may greatly influence the function of camera systems that are typically installed very closely to the windshield.
This is in particular of importance for modern camera-based driver assistance systems or advanced driver assistance systems (ADAS). The influence of the windshield, if not considered, can, for example, result in incorrect estimates with respect to the position or speed of objects. The influence can be described with a so-called displacement field. The pane induces, by refraction, an offset of view beams and an angular change. The offset is typically small and does not change over distance. However, at greater distances, the angular offset results in greater errors, according to the angles. In particular, the second effect, i.e., the induced angular change, is therefore to be determined using the displacement field.
Various methods are used to determine the displacement field of a windshield. In the automotive industry, so-called Moire interferometers are primarily used to measure the angular change produced by the pane. However, the information thus obtained is difficult to transfer to the specific displacement field of a camera mounted closely to the windshield.
Other methods are based on determining the displacement field using a camera and an accurately known calibration body. The distortion effects of the windshield are calculated by determining the displacement in the image or image space with knowledge of the calibration body.
A method and an arrangement according to the present invention are provided. Example embodiments of the present invention are disclosed herein.
The method of the present invention presented serves to measure a transparent pane, in particular with high accuracy, for example for camera systems, wherein the influence of this pane is quantified or measured. The pane, e.g., a windshield, is typically to be mounted in front of the camera or is mounted there. According to an example embodiment of the present invention, the method provides that a displacement field induced by the transparent pane is determined. In this case, a first image of a textured surface without the pane is acquired in a first step, and a second image of the textured surface with the pane is acquired in a second step. In a third step, the displacement field is determined by analyzing the two images using an optical flow method.
The described method of the present invention is not limited to windshields or front windows but can likewise be used for camera systems behind rear windows or other vehicle windows. Below, the case of a windshield is considered as a typical application.
Acquiring an image with the pane means that during the acquisition, the pane is located between the camera and the textured surface and thus in the beam path between the camera and the textured surface. Accordingly, when acquiring an image without the pane, no pane is arranged at that location.
A texture or textured surface is to be understood to mean that the surface has a particular pattern. Particularly suitable for this method are textures with random patterns, e.g., noise patterns, that have a wide range of spatial frequencies. Such a pattern can be generated, for example, by superimposing noise patterns of different frequencies, wherein, for example, Perlin noise is used.
The method according to the present invention disclosed herein makes it possible to determine the displacement field that is induced by a windshield and results in the image space of a camera. The displacement field here refers to the geometric displacement of objects in the image space, e.g., by elongation, stretching, displacement, etc., which results from the changed beam path.
Further advantages and embodiments of the present invention arise from the description and the figures.
It is understood that the aforementioned features and the features yet to be explained below can be used not only in the respectively specified combination but also in other combinations or on their own, without leaving the scope of the present invention.
The present invention is illustrated schematically in the drawings on the basis of embodiments and is described in detail below with reference to the figures.
In the comparison between two images acquired by a camera with and without a windshield, a displacement field between the images results. That is to say, portions of the image are compressed, stretched, or displaced, and thus changed. The displacement field is thus a vector field that represents a mathematical description of this change. This can be used to describe for each structure visible in the image where it has been displaced to.
The method proposed herein now allows to determine this displacement field with comparatively simple means and existing methods highly accurately and densely, i.e., for every pixel of the target camera system. In doing so, an image of a textured surface with and without a windshield is respectively acquired using the target camera system. Afterwards, a method for determining dense displacement fields with respect to an optical flow in the image is used to determine the displacement field. This is shown schematically in
First, a first image 60 of the textured surface 56 without a windshield is acquired. Subsequently, a second image 62 with a windshield 58 is acquired. By analyzing the images 60, 62 using an optical flow method, the displacement field is determined.
In doing so, for each point in the first image, the associated point in the second image is determined, wherein it is assumed that the appearance, e.g., change in image brightness, or features derived therefrom have high similarity in both images. This procedure can determine a dense vector field, which means that displacement information at every or nearly every pixel is available.
It should be noted in this respect that the imaged texture should have some particular properties that are however easy to produce. In some cases, suitably textured surfaces can also be found in the free environment.
Similarly to the textures produced, there should be a random pattern that has sufficiently strong local contrasts. This could, for example, be a house wall that has been exposed to severe weather effects. On the other hand, monotonous areas, such as a blue sky, should be avoided.
Until now, highly accurate calibration bodies that work with special methods for the detection of special markings are used to measure windshields. The method proposed herein, on the other hand, does not require prior knowledge of the textured surface, imposes few conditions on the physical nature thereof, and allows the use of common methods for determining the dense displacement field.
On the one hand, the method can be used to determine the characteristic of a series of windshields, or even during ongoing operation of the production. The assessment or release of a windshield can thus directly depend on the result of the measurement.
As already explained above, various methods are used to determine a displacement field of a windshield. Moiré interferometers are primarily used in this respect. However, the information thus obtained is difficult to transfer to the specific displacement field of a camera mounted closely to the windshield. Other methods are based on determining the displacement field using a camera and an accurately known calibration body. Such a calibration body is shown in
With the proposed method, the goal is now to determine the displacement field that is induced by a windshield and results in the image space of a camera. The displacement field here refers to the geometric displacement of objects in the image space, such as elongation, stretching, displacement resulting from the changed beam path.
We describe a possible setup below. Alternatives to the setup and the general procedure are also described below. The setup is shown schematically in
Generally, the imaging characteristics of the camera 104 without the windshield 102 are known or can be determined simply, namely more simply than with the windshield 102 mounted. For calibrating the camera 104, a measuring system is typically used, in which the camera 104 is clamped in a special mount and an accurately known calibration body is used. Such a procedure is not possible with one or more installed camera(s). Thus, the relationship between view beam angles and pixels for the camera without a windshield is known. Using the displacement field, a corrected pixel-view beam relationship (with the windshield) can now be calculated.
It should be noted in this respect that the introduction of an optical element, such as the windshield 102, always has two effects, the changed angular relationship on the one hand and an offset of the view beam, as shown in
In
Textures that have strong local contrasts and are as random as possible, such as a random noise pattern, are in particular suitable for optical flow methods. In order that the texture also works for different distances to the camera and cameras with different resolutions, i.e., pixels per degree, the pattern should ideally have different local spatial frequencies. The pattern does not have to be known in advance.
In comparison to conventional methods with highly accurate calibration bodies, such as shown in
For example, the random texture makes it possible to determine the displacement field at every pixel when a dense optical flow method is used. For calibration bodies, this is typically not possible at all locations. In the arrangement of
Furthermore, suitable optical flow methods can achieve very high accuracy, namely far below the size of a pixel. The accuracy of the method is thus directly related to the accuracy of the underlying optical flow method but not to the accuracy of a calibration body.
By using different spatial frequencies in the random texture, the pattern can also be used at very different distances or camera image resolutions. This is not easily possible with typical calibration bodies in many cases.
In addition, it should be considered that the creation of the textured surface allows much freedom. For example, a textured film may be applied to a wall or a pattern may simply be projected using one or more projectors.
Ideally, the textured surface is at a similar distance from the camera and windshield as objects in a real situation, i.e., several meters. This is because the offset induced by the windshield has a similar influence. For cameras with larger aperture angles, this requires very large surfaces. With a horizontal aperture angle of 90 degrees and a distance of 5 meters, a flat surface would have to be at least 10 meters wide.
Something like this can hardly be realized with typical calibration bodies. Using projectors, large walls can simply be used, for example. Room corners or the like can also be used. In principle, the surface does not play a role, but shadowing effects must not occur.
An example is a curtain 200 shown in
If several images with and without windshields with changed patterns are acquired when using projectors, the accuracy of the optical flow methods can often be increased even further by combining the results.
In the setup in
A flat surface does not necessarily have to be used. Especially in the case of cameras with a large aperture angle, curved surfaces or room corners may be ideal.
Of course, the method can also be used with other glass panes or optical elements.
It should furthermore be noted that in some applications, mirrors are used to lengthen the optical path. In principle, this method can also be used to determine the influence of imperfections in the mirror.
The method presented can be used by companies for measuring windshields, in particularly internally. The goal in this respect may be to generate statistics about windshields and to return this information to the development process. A large number or all produced windshields can thus be measured and classified or released according to the result.
Number | Date | Country | Kind |
---|---|---|---|
10 2020 215 417.1 | Dec 2020 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2021/078805 | 10/18/2021 | WO |