The present invention relates generally to the regeneration of a nitrogen-oxygen compound (NOx) adsorber catalyst. More particularly, the present invention relates to a method of controlling the frequency of NOx adsorber regeneration cycles by modifying a regeneration-triggering variable based on an engine operating condition.
Environmental concerns have led to increasingly stricter regulation of engine emissions by governmental agencies. The reduction of NOx in exhaust emissions from internal combustion engines has become increasingly important in order to meet governmental regulations. It is widely recognized that this trend of stricter government regulation will continue.
Traditional in-cylinder emission reduction techniques such as exhaust gas recirculation and injection rate shaping, by themselves will not be able to achieve the desired low emission levels. Scientists and engineers recognize that aftertreatment technologies will have to be used, and will have to be further developed in order to meet the future low emission requirements of the diesel engine. Abatement of NOx on motor vehicles may be achieved through the use of catalytic technology that converts the NOx species to diatomic nitrogen (N2) using a reductant as shown in the following equation:
Removal of NOx through the use of NOx adsorber catalysts requires that a hydrocarbon reductant be provided to the catalyst to convert the NOx. Typically, on-board fuel (e.g., diesel fuel) is used as the reductant. Fuel is injected into the exhaust stream for reaction with NOx on the catalyst.
Therefore, a need exists for further technological advancements in emission control systems for internal combustion engines. The present invention is directed toward meeting this need.
One aspect of the present invention contemplates a method comprising: operating an internal combustion engine including an after-treatment system having a NOx adsorber catalyst, the engine includes an engine operating condition threshold value for triggering a regeneration of the NOx adsorber catalyst; determining a change in the NOx adsorber catalyst; and adjusting the engine operating condition threshold value for triggering a regeneration of the NOx adsorber catalyst based upon the determining act.
Another aspect of the present invention contemplates a method comprising: operating a diesel engine having an after-treatment system including a NOx adsorber catalyst; triggering a NOx adsorber catalyst regeneration cycle based on a fuel consumption threshold value; determining the decrease in the NOx adsorber catalyst efficiency over a plurality of the NOx adsorber catalyst regeneration cycles; and modifying the fuel consumption threshold value in response to the determining act.
Yet another aspect of the present invention contemplates a system comprising: a diesel engine that consumes a fuel and produces an exhaust gas; a NOx adsorber in fluid communication with the exhaust gas for adsorbing at least a portion of the exhaust gas; a first value to trigger a first regeneration cycle of the NOx adsorber; a control system to determine the decline in absorbtion efficiency of the NOx adsorber and to output a second value corresponding to the decline in absorbtion efficiency of the NOx adsorber; and a control to calculate a third value based upon the first value and the second value, the third value triggers a second regeneration cycle of the NOx adsorber, in each of the regeneration cycles a reductant is delivered to the NOx adsorber.
A further aspect of the present invention contemplates a method comprising: operating a vehicle including an internal combustion engine, the internal combustion engine including an after-treatment system with an adsorber catalyst; determining if the internal combustion engine has a load greater than a first threshold; determining if the internal combustion engine is participating in an aggressive driving situation; and regenerating the adsorber catalyst only when the engine is not participating in an aggressive driving situation nor subject to a load greater than the first threshold.
For the purposes of promoting understanding of the principles of the invention, reference will be made to the embodiments illustrated in the drawings and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is hereby intended and alterations and modifications in the illustrated device, and further applications of the principles of the present invention as illustrated herein being contemplated as would normally occur to one skilled in the art to which the invention relates.
The present application recognizes that one of the more complex problems in regenerating NOx adsorber catalysts by periodically injecting reductants is that the adsorption efficiency of the catalyst deteriorates over time. As this occurs, the amount of NOx adsorbed decreases after each regeneration cycle. Soon the injection timing and the amount of reductant injected may not properly track the amount of NOx adsorbed on the catalyst. This failure to properly track the regeneration needs of the NOx adsorber catalyst leads to increased NOx emissions due to the failure of the NOx adsorber to adsorb. Furthermore, reductant is wasted as amounts are released when unneeded. The present application provides methods to maintain the performance of the system as the catalyst deteriorates.
Referring to
After the adsorber is regenerated, the deterioration of adsorber efficiency is determined at block 14. The deterioration of the adsorber efficiency may be determined by utilizing an open-loop empirical data table including a deterioration schedule residing in a controller or using a pair of sensors to provide a closed-loop assessment of the adsorber condition. In one form of the present invention the pair of sensors are oxygen sensors, however in another form the pair of sensors are NOx sensors The NOx sensors look at a direct measurement of the NOx. At block 15, this adsorber efficiency is compared to a minimal threshold value. If the minimal threshold value is satisfied, then the algorithm ends. If not, the algorithm moves on to block 16 where the regeneration triggering value is modified based on the amount of deterioration of the adsorber. The algorithm then uses the new regeneration triggering value upon returning to the beginning of the algorithm at block 11.
Referring to
An inlet oxygen sensor 27 measures the oxygen content of the exhaust gas at inlet 31 and an outlet oxygen sensor 28 measures the oxygen content of the exhaust gas at outlet 32. Controller 29 receives an input corresponding to the amount of fuel consumed by engine 20 from fuel source 21. A signal from fuel source 21 to controller 29 is used in determining the amount of fuel consumed. In one form of the present application the amount of fuel consumed is calculated. Preferably, but without limiting the present application the amount of fuel consumed is a summation of discrete values. Moreover, outputs from first oxygen sensor 27 and second oxygen sensor 28 are input into the controller 29. Controller 29 then determines the time for supplying reductant and the amount of reductant to be supplied through injector 26 to NOx adsorber inlet 31. Controller 29 then sends an output signal to the reductant providing source 25. While, the present application has been described in terms of two oxygen sensors it is also contemplated to utilize the output from a pair of NOx sensors.
Reductant providing source 25 may further include a pump to provide a pressurized amount of reductant to injector 26. In one form the system includes an auxiliary pump to pressurize the reductant. As discussed above in another form of the present invention the reductant is delivered in cylinder by the engine fuel injection system. The reductant providing source can be the fuel source 21 that can be placed in fluid flow communication with injector 26. Further, other methods known to one skilled in the art for supplying reductant to the NOx adsorber are contemplated herein. If inputs from first oxygen sensor 27 and second oxygen sensor 28 indicate that the efficiency of the adsorber has dropped below a minimum level then an output signal is sent to display 30 to indicate that the catalyst has malfunctioned. A malfunction may result in further activities such as a desulfurizing event or replacement of the catalyst.
Referring to
After regeneration of NOx adsorber 23 at block 38, inputs from the first oxygen sensor 27 and second oxygen sensor 28 allow the controller to determine a first characteristic across the sensors. In one form of the invention the first characteristic is delay time, however other characteristics are contemplated herein. This is symbolized in block 39 as Dn. The algorithm then moves to block 40 and determines if the actual delay time is less than or equal to a minimum delay time threshold value symbolized as Do. If the actual delay time is less than or equal to this minimum delay time threshold value, then a desulfation event is begun as indicated by block 41. After the desulfation event at block 41, the algorithm then moves to block 42 and determines the actual delay time across the oxygen sensors again. At block 43 the algorithm determines if the actual delay time across the oxygen sensors is still less than or equal to the minimum delay time threshold value. If true, a catalyst malfunction/failure signal is indicated at block 44. The algorithm ends after the failure signal is made.
In contrast, if the delay across the sensors is determined at block 40 or 43 to be greater than the minimum delay time threshold value Do then the algorithm proceeds to block 45 to calculate the percent difference. The percent difference is calculated by first subtracting the actual delay time from a predetermined base delay time and then dividing that difference by the predetermined base delay time. This value is then multiplied by one hundred to determine the percent difference. The predetermined base delay time corresponds to the delay time across a fresh NOx adsorber. At block 46, the algorithm then calculates the modified fuel consumption trigger value. The modified fuel consumption trigger value is symbolized as Fideal. Fideal is a function of a scalable constant a1, the regeneration triggering fuel consumption value Ft and the percent difference. The scalable constant a1 is derived empirically for each class of engines and for each particular adsorber.
After Fideal is calculated in block 46, the algorithm returns to block 35, and the present fuel consumption is determined again. The number of regeneration cycles now is at least one, because one regeneration cycle has occurred. Therefore, the algorithm moves to block 47 where the present fuel consumption is now compared to see if it is greater than or equal to the modified fuel consumption trigger value. This is depicted at block 47 as Fn is greater than or equal to Fideal. If true, then adsorber regeneration is indicated and the algorithm passes to block 38. If not, the algorithm returns and the fuel consumption value is determined again at block 35.
Referring to
Controller 56 includes an empirically determined table of constants to modify the predetermined fuel trigger value in accordance to the number of regeneration cycles already performed. Once the controller determines a regeneration cycle is indicated, an output signal is sent to reductant providing source 25 to inject reductant into exhaust gas pipe line 24 through the use of injector 26. As discussed above, the reductant providing source can be the fuel source 21, which will be, placed in fluid flow communication with injector 26. If controller 56 determines that the number of regeneration cycles performed indicates that the efficiency of NOx adsorber 23 has likely dropped below a predetermined minimum threshold, then an output signal is sent to display 30 to indicate the failure of NOx adsorber 23.
Referring to
After adsorber regeneration is indicated and performed, the algorithm determines the empirically derived modification constant at block 67. The empirically derived modification constant is symbolized as a2. The empirically derived modification constants are provided from the controller 56 which includes a table of modification constants. The algorithm then proceeds next to block 68 where the modified fuel consumption trigger value is determined. The modified fuel consumption trigger value is symbolized in
The algorithm moves to block 70 when the modified fuel consumption trigger value is less than or equal to the minimum fuel trigger value Fo. Block 70 indicates beginning a desulfation event. After this desulfation event has occurred, the algorithm then moves to block 72 where the comparison between the modified fuel consumption trigger value and the minimum fuel trigger value is performed once again. When block 72 determines that the modified fuel consumption trigger value is still less than the minimum fuel trigger value Fo then the algorithm moves to block 73 to signal a catalyst failure to the display 30. Alternatively, the algorithm returns to block 63 to determine the present fuel consumption value when either block 69 or 72 indicates that the valve for Fideal is greater than the minimum fuel trigger value Fo.
Upon return to block 64, the number of regeneration cycles is now at least one and the algorithm moves to block 74. At block 74, the present fuel consumption value is compared to the modified fuel consumption trigger value Fideal. If the present fuel consumption value is greater than or equal to the modified fuel consumption trigger value, adsorber regeneration is indicated at block 66. If not, the algorithm returns to block 63.
While the description above depicts a few embodiments of the invention, they are not considered illustrative of all potential embodiments of the present invention. For example, the NOx adsorber catalyst may consist of various alkali metals and precious metals and may contain some oxygen storage chemicals such as ceria. The oxygen sensors can be a switching type around stoichiometric, a wide range heated oxygen sensor (HEGO, WEGO) or a NOx sensor with an oxygen sensing signal. Any sensor that can detect changes in the air fuel ratio are envisioned.
Referring to
While the invention has been illustrated and described in detail in the drawings and foregoing description, the same is to be considered as illustrative and not restrictive in character, it being understood that only the preferred embodiment has been shown and described and that all changes and modifications that come within the spirit of the invention are desired to be protected. It should be understood that while the use of the word preferable, preferably or preferred in the description above indicates that the feature so described may be more desirable, it nonetheless may not be necessary and embodiments lacking the same may be contemplated as within the scope of the invention. Further, when the language “at least a portion” and/or “a portion” is used the item may include a portion and/or the entire item unless specifically stated to the contrary.
The present application is a continuation of PCT Patent Application No. PCT/US2005/019850 filed Jun. 6, 2005, which claims the benefit of U.S. Provisional Patent Application No. 60/578,015 filed Jun. 8, 2004, and entitled METHOD FOR MODIFYING TRIGGER LEVEL FOR ADSORBER REGENERATION, each of which is incorporated herein by reference.
The U.S. Government has certain rights in the present invention as provided by the terms of contract no. DE-FC05-97OR22533 awarded by the U.S. Department of Energy.
Number | Name | Date | Kind |
---|---|---|---|
5473887 | Takeshima et al. | Dec 1995 | A |
5743084 | Hepburn | Apr 1998 | A |
5784879 | Dohta et al. | Jul 1998 | A |
5894725 | Cullen et al. | Apr 1999 | A |
6216449 | Strehlau et al. | Apr 2001 | B1 |
6244046 | Yamashita | Jun 2001 | B1 |
6308515 | Bidner et al. | Oct 2001 | B1 |
6311482 | Yamashita | Nov 2001 | B1 |
6327847 | Surnilla et al. | Dec 2001 | B1 |
6327848 | Poggio et al. | Dec 2001 | B1 |
6345498 | Yonekura et al. | Feb 2002 | B2 |
6360530 | Robichaux et al. | Mar 2002 | B1 |
6370868 | Kolmanovsky et al. | Apr 2002 | B1 |
6374597 | Bidner et al. | Apr 2002 | B1 |
6389802 | Berger et al. | May 2002 | B1 |
6422003 | Ament et al. | Jul 2002 | B1 |
6427439 | Xu et al. | Aug 2002 | B1 |
6434928 | Manaka | Aug 2002 | B1 |
6438944 | Bidner et al. | Aug 2002 | B1 |
6451602 | Popoff et al. | Sep 2002 | B1 |
6453663 | Orzel et al. | Sep 2002 | B1 |
6463733 | Asik et al. | Oct 2002 | B1 |
6467259 | Surnilla et al. | Oct 2002 | B1 |
6477832 | Surnilla et al. | Nov 2002 | B1 |
6481199 | Bidner et al. | Nov 2002 | B1 |
6487849 | Bidner et al. | Dec 2002 | B1 |
6487850 | Bidner et al. | Dec 2002 | B1 |
6487853 | Hepburn et al. | Dec 2002 | B1 |
6490858 | Barrett et al. | Dec 2002 | B2 |
6490860 | Farmer et al. | Dec 2002 | B1 |
6497092 | Theis | Dec 2002 | B1 |
6502387 | Asik et al. | Jan 2003 | B1 |
6651422 | LeGare | Nov 2003 | B1 |
6684631 | Surnilla et al. | Feb 2004 | B2 |
6708483 | Robichaux et al. | Mar 2004 | B1 |
6871492 | Huynh et al. | Mar 2005 | B2 |
6889497 | Schnaibel et al. | May 2005 | B2 |
7111451 | Dou et al. | Sep 2006 | B2 |
20020026790 | Shimotani | Mar 2002 | A1 |
20020189580 | Surnilla et al. | Dec 2002 | A1 |
20020194836 | Asik et al. | Dec 2002 | A1 |
20030000205 | Lewis et al. | Jan 2003 | A1 |
20030037541 | Farmer et al. | Feb 2003 | A1 |
Number | Date | Country |
---|---|---|
WO 9935386 | Jul 1999 | WO |
Number | Date | Country | |
---|---|---|---|
20070240407 A1 | Oct 2007 | US |
Number | Date | Country | |
---|---|---|---|
60578015 | Jun 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2005/019850 | Jun 2005 | US |
Child | 11636184 | US |