Method for monitoring a cooling system

Information

  • Patent Grant
  • 6302065
  • Patent Number
    6,302,065
  • Date Filed
    Wednesday, March 15, 2000
    24 years ago
  • Date Issued
    Tuesday, October 16, 2001
    22 years ago
Abstract
A method is presented for diagnosing an engine coolant temperature sensor and an engine thermostat. Engine coolant temperature is estimated based on engine operating conditions, such as engine speed, net engine torque, air flow, fuel-air ratio, exhaust gas temperature, etc., and a characteristic of the thermostat. The estimate is compared to the actual reading of the engine coolant temperature sensor in order to detect degradation in the performance of the sensor or the engine thermostat. If degradation is detected, the estimated engine coolant temperature can be used for various engine control strategies, such as electronic fuel injection, thereby improving vehicle performance, fuel efficiency, and emission control.
Description




FIELD OF THE INVENTION




The present invention relates generally to systems for estimating engine coolant temperature in a vehicle equipped with an internal combustion engine, and more particularly, to using this information to determine whether the performance of the cooling system is degraded.




BACKGROUND OF THE INVENTION




Vehicle cooling systems typically have a coolant temperature sensor for providing coolant temperature information to the electronic engine controller and a thermostat for providing constant coolant temperature control. Coolant temperature is a very important parameter in several engine control strategies, and in particular in an electronically controlled fuel supply system. If the coolant temperature sensor is degraded, fuel consumption and emission strategy may be degraded. For example, if the coolant temperature sensor is indicating that the engine is cold, rather than warmed up, a rich fuel-air mixture may be supplied longer than necessary, thus potentially degrading emissions and fuel efficiency.




One method of diagnosing the engine coolant temperature sensor is described in U.S. Pat. No. 4,274,381. Engine coolant temperature is inferred from another temperature sensor such as the temperature sensor of the catalytic converter. This inferred value is compared to the value read by the coolant temperature sensor. If the two values are not the same, degradation is indicated. Then, a signal corresponding to the output of the engine coolant temperature sensor under normal engine operating conditions replaces the output of the degraded coolant temperature sensor.




The inventor herein has recognized a disadvantage with this approach. In particular, there is not a way to determine which one of the above mentioned sensors is degraded. Also, providing a predetermined signal to replace the degraded sensor information is not an accurate representation of the actual operating conditions, especially at high/low ambient temperatures, or at engine start-up.




Another disadvantage is that this method does not diagnose the cooling system thermostat. If the thermostat performance is degraded, efficient temperature levels will not be maintained under all operating conditions, and thus, vehicle performance, fuel efficiency and emission control may be degraded. Further, the prior art does not take into account the state of the thermostat (open or closed) when estimating coolant temperature.




SUMMARY OF THE INVENTION




An object of the present invention is to provide a method for diagnosing a cooling system in an internal combustion engine, and in particular to diagnosing the engine coolant temperature sensor and the thermostat.




The above object is achieved and disadvantages of prior approaches overcome by a method for diagnosing a cooling system having an engine coolant temperature sensor and a thermostat in an internal combustion engine, the method comprising: estimating an engine coolant temperature based on an operating condition and a characteristic of the thermostat; reading the engine coolant temperature sensor; comparing said estimate with said reading; and determining operability of the system based on said comparison.




An advantage of the above object of the invention is that a more precise method of diagnosing the engine coolant temperature sensor is developed. By taking into account a characteristic of the thermostat, it is possible to more accurately estimate coolant temperature since the cooling system performs differently depending on the operation of the thermostat. The electronic engine controller can use a more accurate estimate of the coolant temperature in case the coolant temperature sensor performance is degraded.




In another aspect of the present invention, a method for estimating an engine coolant temperature and diagnosing a coolant temperature sensor and a thermostat is developed. This method comprises determining a first estimate of heat added to the coolant based on an engine operating condition; determining a second estimate of coolant temperature based on said first estimate; reading the coolant temperature sensor; comparing said estimate with said reading; determining whether the coolant temperature sensor is functioning properly based on said comparing; and determining whether the thermostat is functioning properly based on said comparing. By using heat added to estimate coolant temperature, an accurate model is obtained to improve estimation. This ability contributes to improved vehicle performance, fuel efficiency and emissions control.




Other objects, features and advantages of the present invention will be readily appreciated by the reader of this specification.











BRIEF DESCRIPTION OF THE DRAWINGS




The objects and advantages of the invention claimed herein will be more readily understood by reading an example of an embodiment in which the invention is used to advantage with reference to the following drawings wherein:





FIG. 1

is a block diagram of a vehicle illustrating various components related to the present invention;





FIG. 2

is a block diagram of an engine in which the invention is used to advantage;





FIGS. 3

,


4


, and


5


are block diagrams of embodiments in which the invention is used to advantage.











DESCRIPTION OF THE INVENTION




Referring to

FIG. 1

, an internal combustion engine


10


, further described herein with particular reference to

FIG. 2

, is shown coupled to the electronic engine controller


12


, and to the cooling system


17


. Cooling system


17


is also coupled to a thermistor type engine coolant temperature sensor


14


, and to a thermostat


15


. The thermostat


15


opens when engine coolant temperature exceeds a predetermined high value to allow coolant to circulate and thus facilitate engine cooling. The coolant temperature sensor


15


is also coupled to the electronic engine controller


12


. The information provided by the coolant temperature sensor is used in a variety of engine control strategies, such as emissions, fuel injection, etc.




Electronic engine controller


12


controls internal combustion engine


10


having a plurality of cylinders, one cylinder of which is shown in FIG.


2


. Engine


10


includes combustion chamber


30


and cylinder walls


32


with piston


36


positioned therein and connected to crankshaft


13


. Combustion chamber


30


communicates with intake manifold


44


and exhaust manifold


48


via respective intake valve


52


and exhaust valve


54


. Exhaust gas oxygen sensor


16


is coupled to exhaust manifold


48


of engine


10


upstream of catalytic converter


20


. In a preferred embodiment, sensor


16


is a HEGO sensor as is known to those skilled in the art.




Intake manifold


44


communicates with throttle body


64


via throttle plate


66


. Throttle plate


66


is controlled by electric motor


67


, which receives a signal from ETC driver


69


. ETC driver


69


receives control signal (DC) from controller


12


. Intake manifold


44


is also shown having fuel injector


68


coupled thereto for delivering fuel in proportion to the pulse width signal (fpw) from controller


12


. Fuel is delivered to fuel injector


68


by a conventional fuel system (not shown) including a fuel tank, fuel pump, and fuel rail (not shown).




Engine


10


further includes conventional distributor-less ignition system


88


to provide ignition spark to combustion chamber


30


via spark plug


92


in response to controller


12


. In the embodiment described herein, controller


12


is a conventional microcomputer including: microprocessor unit


102


, input/output ports


104


, electronic memory chip


106


, which is an electronically programmable memory in this particular example, random access memory


108


, and a conventional data bus.




Controller


12


receives various signals from sensors coupled to engine


10


, in addition to those signals previously discussed, including: measurements of inducted mass air flow (MAF) from mass air flow sensor


110


coupled to throttle body


64


; engine coolant temperature (ECT) from temperature sensor


112


coupled to cooling jacket


114


; a measurement of throttle position (TP) from throttle position sensor


117


coupled to throttle plate


66


; a measurement of transmission shaft torque, or engine shaft torque from torque sensor


121


, a measurement of turbine speed (Nt) from turbine speed sensor


119


, where turbine speed measures the speed of shaft


17


, and a profile ignition pickup signal (PIP) from Hall effect sensor


118


coupled to crankshaft


13


indicating an engine speed (Ne). Alternatively, turbine speed may be determined from vehicle speed and gear ratio.




Continuing with

FIG. 2

, accelerator pedal


130


is shown communicating with the driver's foot


132


. Accelerator pedal position (PP) is measured by pedal position sensor


134


and sent to controller


12


. In an alternate embodiment, throttle plate


66


communicates with the driver's foot through a mechanical linkage. The position of throttle plate


66


is measured by throttle position sensor


117


, and sent to controller


12


.




Referring now to

FIG. 3

, a routine is described for using the estimated engine coolant temperature value to diagnose the engine coolant temperature sensor and the thermostat. First, in step


500


a determination is made whether the vehicle has just been turned on (engine start-up). If the answer to step


500


is YES, estimated coolant temperature at start-up, TCEST_STRT is calculated in step


570


(see step


710


of FIG.


4


). The routine then proceeds to step


580


where the value of the engine coolant temperature sensor, ECT, is read. Next, in step


590


a determination is made whether the value read by the sensor exceeds the estimated engine coolant temperature at engine start-up by a value larger than a preselected tolerance, ECT_STRT_DEL. If the answer to step


590


is NO, the engine coolant temperature sensor passes the rationality test and the routine is exited. If the answer to step


590


is YES, the routine proceeds to step


600


, whereupon a decision is made whether the engine coolant temperature sensor reading exceeds a predetermined tolerance level, ECT_HOT. If the answer to step


600


is NO, the sensor passes the rationality test and the routine proceeds to step


630


, whereupon the estimated value of the engine coolant temperature, TCEST, is seeded with the measured coolant temperature, ECT. The routine is exited. If the answer to step


600


is YES, the sensor does not pass the test and in step


610


the estimated value of the engine coolant temperature is set to be equal to the estimated value of the engine coolant temperature at engine start-up. The routine proceeds to step


620


whereupon a diagnostic code is set, and the routine is exited.




If the answer to step


500


is NO, the routine proceeds to step


510


whereupon the estimated value of the engine coolant temperature, TCEST, is calculated. The details of step


510


are described in FIG.


5


. Next, in step


520


, a decision is made whether the above estimated value exceeds the coolant temperature at which the thermostat is supposed to open by more than a predetermined tolerance amount. In other words, a decision is made whether the coolant temperature is high enough for the thermostat to open. If the answer to step


520


is NO, no thermostat test can be performed and the routine is exited. If the answer to step


520


is YES, a decision is made in step


530


whether the value read by the engine coolant temperature sensor exceeds the temperature at which the thermostat is supposed to open, TSTO, by more than a small predetermined tolerance. If the answer to step


530


is NO, the engine coolant temperature sensor does not pass the warm-up test, a diagnostic code is set in step


640


and the routine is exited. In other words, if the estimated engine coolant temperature is at the level at which the thermostat is supposed to open, and the temperature read by the coolant temperature sensor is below that value, a decision is made that either the sensor or the thermostat are not degraded, and a diagnostic code is set.




If the answer to step


530


is YES, the sensor passes the test, and the routine proceeds to step


540


whereupon a determination is made whether the engine coolant temperature sensor reading exceeds a predetermined tolerance level, ECT_HOT. If the answer to step


540


is NO, the routine exits. If the answer to step


540


is YES, the routine proceeds to step


550


where a determination is made whether the value read by the engine coolant temperature sensor exceeds the estimated value by larger than a small predetermined tolerance, TCEST_ERROR. If the answer to step


550


is YES, i.e., the value read by the sensor is significantly higher than the estimated value, a decision is made that the sensor is not functioning properly, and the routine proceeds to step


620


as described above. If the answer to step


550


is NO, the sensor is functioning properly and the routine proceeds to step


560


whereupon the value of estimated engine coolant temperature, TCEST, is set to be equal to the actual value read by the engine coolant temperature sensor, ECT. The routine then exits. If it is determined that the engine coolant temperature sensor is not functioning properly, the estimated coolant temperature value can be substituted to enable normal vehicle operation until service time. In that way, improved customer satisfaction as well as improved vehicle performance will be achieved.




Moving on to

FIG. 4

, a routine is described for calculating estimated engine coolant temperature at engine start-up. First, in step


700


, a decision is made whether the engine has just started. If the answer to step


700


is YES, estimated engine coolant temperature at start-up, TCEST_STRT, is calculated in step


710


according to the following equation:




 TCEST_STRT=(ECT_NVRAM −T


0


)*EXP(−SOAK_TIME/TAU)+T


0


,




where ECT_NVRAM is the engine coolant temperature stored in non-volatile memory, and corresponds to the engine coolant temperature at shutdown, T


0


is ambient temperature, SOAK_TIME is engine off time, and TAU is an empirically derived time constant. This value is used in step


570


FIG.


3


. The routine then exits. If the answer to step


700


is NO, the routine proceeds to step


720


, whereupon the value read by the engine coolant temperature sensor is stored in non-volatile memory, and the routine is exited.




Referring now to

FIG. 5

, a routine is described for estimating engine coolant temperature based on the engine thermodynamic model. First, in step


800


, engine parameters, such as air flow, W, fuel flow, WF, exhaust gas temperature, EGT, engine speed, N, net torque, TNET, and inlet air temperature, IAT, are read. Then, in step


810


, heat transferred into the cooling system, QCDOT, is calculated according to the following equation:






QCDOT=WF*HFV−(W*CPA+WF*CPF)*(EGT−IAT)−N*TNET,






where HVF is the lower heating value of the fuel, CPA is the constant pressure specific heat of air, and CPF is the constant pressure specific heat of the fuel.




Next, in step


820


a determination is made whether the estimated value of the engine coolant temperature, TCEST, is larger than the threshold temperature at which the thermostat should start to open, TSTO. The initial value for TCEST comes from steps


620


, FIG.


1


. If the answer to step


820


is NO, i.e. the estimated coolant temperature is below the threshold at which the thermostat is supposed to start opening, the rate of change of coolant temperature, TCDOT, is calculated according to the low coolant temperature model. If the answer to step


820


is YES, the high coolant temperature model is used to estimate TCDOT in step


840


. Once steps


830


or


840


are completed, the routine proceeds to step


850


where TCEST is calculated according to the following equation:






TCEST=TCDOT*DT+TCEST,






where DT is a predetermined time interval. The routine then exits.




This concludes the description of the invention. Engine thermodynamic properties, such as net torque, fuel-air ratio, engine speed, exhaust gas temperature, etc., are used to estimate the heat transfer to the cooling system. This estimate is used to estimate the rate of change in engine coolant temperature. Two different models are used depending on the characteristic of the thermostat. If the coolant temperature is above the threshold at which the thermostat is supposed to open, high range coolant temperature change rate is calculated. If the coolant temperature is below the threshold at which the thermostat is supposed to open, low range coolant temperature change rate is calculated. The estimated engine coolant temperature is then calculated by integrating the rate of change of coolant temperature over a period of time. This method provides an accurate estimate of engine coolant temperature by taking into account engine thermodynamic properties, as well as changes in the cooling system due to the characteristic of the thermostat. The reading of it by those skilled in the art would bring to mind many alterations and modifications without departing from the spirit and the scope of the invention. Accordingly, it is intended that the scope of the invention is defined by the following claims.



Claims
  • 1. A method for estimating an engine coolant temperature in a cooling system of an internal combustion engine having an engine coolant temperature sensor and a thermostat, the method comprising:estimating the engine coolant temperature based on an operating condition; comparing said estimate to a preselected threshold value; adjusting said estimate based on a first parameter if said estimate is greater than said preselected threshold value; and adjusting said estimate based on a second parameter if said estimate is smaller than said preselected threshold value.
  • 2. The method recited in claim 1 wherein said preselected threshold value is a temperature at which the thermostat starts to open.
  • 3. The method recited in claim 1 wherein said operating condition is an engine operating condition.
  • 4. The method recited in claim 3 wherein said engine operating condition is a fuel-air ratio.
  • 5. The method recited in claim 3 wherein said engine operating condition is an engine speed.
  • 6. The method recited in claim 3 wherein said engine operating condition is net torque.
  • 7. The method recited in claim 1 wherein said preselected threshold value is a temperature at which the thermostat is supposed to open.
  • 8. The method recited in claim 1 wherein said first parameter is a high operating range rate of the engine coolant temperature change.
  • 9. The method recited in claim 1 wherein said second parameter is a low operating range rate of the engine coolant temperature change.
  • 10. A method for diagnosing a cooling system having an engine coolant temperature sensor and a thermostat in an internal combustion engine, the method comprising:estimating an engine coolant temperature based on an operating condition and a characteristic of the thermostat, wherein said characteristic of the thermostat is an open or closed state; reading the engine coolant temperature sensor; comparing said estimate with said reading; and determining if the cooling system is functioning properly based on said comparison.
  • 11. The method as cited in claim 10 wherein said operating condition is an engine speed.
  • 12. The method as cited in claim 10 wherein said operating condition is an air-fuel ratio.
  • 13. The method as cited in claim 10 wherein said operating condition is a net engine torque.
  • 14. The method as cited in claim 10 wherein said comparison further comprises indicating when said estimate deviates from said reading by a predetermined amount.
  • 15. The method recited in claim 10 wherein said determination further comprises indicating that the thermostat is degraded if said estimate is higher than said reading and higher than a specified temperature.
  • 16. The method recited in claim 15 wherein said specified temperature is a temperature at which the thermostat starts to open.
  • 17. The method recited in claim 10 wherein said determination further comprises indicating that the coolant temperature sensor is degraded if said estimate varies from said reading by a specified amount.
  • 18. A method for estimating an engine coolant temperature and diagnosing a coolant temperature sensor and a thermostat, both coupled to an internal combustion-engine the method comprising:determining a first estimate of heat added to the coolant based on an engine operating condition; determining a second estimate of coolant temperature based on said first estimate, wherein said determining said second estimate further comprises integrating said first estimate with respect to time; reading the coolant temperature sensor: comparing said second estimate with said reading; determining operability of the coolant temperature sensor based on said comparison; and determining operability of the thermostat based on said comparison.
  • 19. A method for estimating an engine coolant temperature and diagnosing a coolant temperature sensor and a thermostat, both coupled to an internal combustion engine, the method comprising:determining a first estimate of heat added to the coolant based on an engine operating condition; determining a second estimate of coolant temperature based on said first estimate; reading the coolant temperature sensor; comparing said second estimate with said reading; determining operability of the coolant temperature sensor based on said comparison; determining operability of the thermostat based on said comparison; and using said second estimate in place of said reading when the coolant temperature sensor is degraded.
  • 20. A method for estimating an engine coolant temperature and diagnosing a coolant temperature sensor and a thermostat, both coupled to an internal combustion engine, the method comprising:determining a first estimate of heat added to the coolant based on an engine operating condition; determining a second estimate of coolant temperature based on said first estimate; reading the coolant temperature sensor: comparing said second estimate with said reading, wherein said comparing further comprises indicating when said reading exceeds a specified threshold; determining operability of the coolant temperature sensor based on said comparison; and determining operability of the thermostat based on said comparison.
  • 21. A method for estimating an engine coolant temperature and diagnosing a coolant temperature sensor and a thermostat, both coupled to an internal combustion engine, the method comprising:determining a first estimate of heat added to the coolant based on an engine operating condition; determining a second estimate of coolant temperature based on said first estimate; reading the coolant temperature sensor; comparing said second estimate with said reading; determining operability of the coolant temperature sensor based on said comparison; determining operability of the thermostat based on said comparison; and indicating when said reading varies from said second estimate by a specified amount.
  • 22. A method for estimating an engine coolant temperature and diagnosing a coolant temperature sensor and a thermostat, both coupled to an internal combustion engine, the method comprising:determining a first estimate of heat added to the coolant based on an engine operating condition; determining a second estimate of coolant temperature based on said first estimate; indicating when said second estimate indicates a specified temperature above a specified threshold; reading the coolant temperature sensor; comparing said second estimate with said reading; determining operability of the coolant temperature sensor based on said comparison; and determining operability of the thermostat based on said comparison.
US Referenced Citations (8)
Number Name Date Kind
4274381 Abo Jun 1981
4402217 Higashiyama Sep 1983
4534214 Takahashi Aug 1985
4556029 Yamaguchi et al. Dec 1985
5551396 Suzuki et al. Sep 1996
5877413 Hamburg et al. Mar 1999
6200021 Mitsutani et al. Mar 2001
6240774 Niki et al. Jun 2001