The loudspeaker 18 may cooperate with an acoustical system 20 located downstream of the loudspeaker 18, which may comprise, for example, a wax filter 22, acoustical filters 24 and some kind of tubing 26. Such tubing 26 will have a significant length if the hearing aid 10 is of the BTE type, in which case the loudspeaker, together with the hearing aid 10, will be located behind the ear, while the tubing 26 extends into the ear canal.
The transmission unit comprises a microphone arrangement 144 (which may consist of two or more spaced-apart microphones for enabling acoustic beam forming capability), an audio signal processing unit 146 for processing the audio signals from the microphone arrangement 144, a transmitter 148 and an antenna 150. Usually the audio link 145 will be an FM link.
The receiver unit 110 comprises an antenna 152, a receiver 154 for recovering the audio signals from the signal received at the antenna 152, a central processing unit 114 for processing the received audio signals, a power amplifier 116 for amplifying the processed audio signals, and a loudspeaker 118. As in the example of
Both in the embodiment of
According to one embodiment, an acoustic alarm signal may be produced by the central processing unit 14, 114 with the help of the loudspeaker 18, 118 in order to provide the user with an acoustic alarm. Such acoustic alarm may comprise an alarm tone and/or a voice message.
According to an alternative embodiment, the status signal may be transmitted from the central processing unit 14, 114 to a remote device 32 via a wireless link 34 which possibly is an inductive link utilizing an inductive antenna 38 included in the remote device 32 and an inductive antenna 36 connected to the central processing unit 14, 114. The remote device 32 further includes a signal processing unit 40 for processing the signals received by the antenna 38 and a display 40 for displaying the alarm signal received via the inductive link 34, which in this embodiment will be an optical alarm signal rather than an acoustic alarm signal.
The remote device 32 could be used by the user of the hearing device 10, 110, or, in particular in the case of
The inductive link 34 may be bidirectional link. In this case, transmission of the status signal from the hearing device 10, 110 may be initiated by receipt of a polling command at the hearing device 10, 110 transmitted from the remote device 32. Thereby, for example, the teacher in the classroom may check whether the loudspeaker 118 used by each pupil works properly. In addition, the bidirectional link 34 may serve to monitor also other components of the system, such as battery status, status of the audio link 145, etc.
According to an alternative embodiment, rather than being initiated by receipt of a polling signal, measurement of the electrical impedance of the loudspeaker 18, 118 and the subsequent analysis of the measured electrical impedance will be repeated in regular intervals.
Preferably, the measured electrical impedance as a function of frequency will be analyzed by comparing the measured electrical impedance to reference data stored in the hearing device 10, 110. Such reference data may be generated in the manufacturing process of the hearing device 10, 110. Preferably the resonance frequency and/or the quality factor of the loudspeaker 18, 118 are analyzed by measuring the electrical impedance as a function of frequency. Preferably the status signal will be provided as all alarm signal if the difference between the actually measured electrical impedance data and the stored reference data exceeds a predetermined threshold, wherein the magnitude of the difference between the measured data and the stored reference data may be taken as a measure of the degree of disturbance of the loudspeaker 18, 118, for example of the degree of the mechanical obstruction of the loudspeaker 18, 118 by ear wax.
The evaluation of the status of loudspeaker 18, 118 and/or the acoustical system 20, 120 cooperating with the loudspeaker 18, 118 may include an evaluation of whether the loudspeaker 18, 118 is working according to specification.
Preferably such evaluation will include a check of whether the loudspeaker is still working properly or whether it is out of order.
In the case of a BTE hearing aid the system will include a tubing 26 extending from the loudspeaker 18 into the user's ear canal. The length and/or the diameter of such tubing 26 can be selected individually by the fitter. If the length/diameter of the tubing 26 is known, the acoustical performance of the BTE hearing aid can be optimized. Due to the acoustical coupling of the tubing 26 to the loudspeaker 18 it is possible to estimate from the measured electrical impedance of the loudspeaker 18 the length/diameter of the tubing 26 used for each BTE hearing aid 10. With this knowledge, it is possible to optimize the acoustical performance of the hearing device automatically by optimizing the setting the operation parameters of the hearing aid according to the determined length/diameter of the tubing 26, eliminating therefore the need for the fitter to enter the length/diameter data into the computer (not shown) for a fine tuning procedure, thus saving time and avoiding possible errors. To this end, the central processing unit 14 of the hearing aid 10 may provide for a signal representative of the determined length/diameter of the tubing 26, which signal is supplied to the fitting computer.
In addition to evaluating the length/diameter of the tubing 26 from the measured electrical impedance of the loudspeaker 18 it is also possible to evaluate whether the end of the tubing 26 suffers from a mechanical obstruction, for example by ear wax.
An example of how the measurement of the electrical impedance of the loudspeaker 18, 118 can be done by the analyzer unit 30 as given in
Test measurements have been performed with the set-up of
According to
According to one embodiment, the resonance frequency of the loudspeaker in free space is stored in the hearing device 10, 110 during the manufacturing process. Later, when the hearing device 10, 110 is operated, the analyzer unit 30 generates the stored resonance frequency and measures the voltage on the resistor 60 at this frequency. If the measurement shows too much of a difference, an alarm signal is created, as already explained above, for example, telling the user that the loudspeaker is blocked and should be cleaned.
While various embodiments in accordance with the present invention have been shown and described, it is understood that the invention is not limited thereto, and is susceptible to numerous changes and modifications as known to those skilled in the art. Therefore, this invention is not limited to the details shown and described herein, and includes all such changes and modifications as encompassed by the scope of the appended claims.