The present invention concerns the field of accumulator batteries of the lithium ion or “Li-ion” type. In particular, the invention concerns a method for monitoring an electrochemical cell or a battery. The invention also relates to a monitoring device implementing the monitoring method.
The invention relates to the field of energy storage, and more particularly to the field of lithium ion or “Li-ion” batteries.
The development of a health indicator has become essential for the provision of reliable information to the user, for both on-board and stationary applications. The state of health (SOH) is an indication of battery wear. It is the ratio of the total amount of storable electrical energy (Cp) to the initial storage capacity (Cp initial), that is to say the ratio of the effective storage capacity (Cp) to the initial storage capacity (Cp initial).
The SOH parameter characterizes the ageing of a battery, that is to say its degree of degradation in the course of its use, in terms of lost capacity (that is to say, loss of range) and in terms of performance (delivered power). State of health indicators can potentially differ considerably, and may be based on electrochemical quantities (capacity measurement and electrical resistance). Electrochemical indicators are affected by the operating temperature of the battery, making them difficult to use.
The onset of battery ageing is due to electrochemical or chemical mechanisms which degrade the internal components. The internal mechanisms responsible for battery ageing are:
The combination of these mechanisms results in an irreversible loss of performance and an accumulation of forces or mechanical stresses within the accumulator.
These degradation reactions cause gas to be produced by decomposition of the electrolyte or corrosion of the collector, decomposition of the passivation film, breakdown of the crystal structure or atomization of particles.
The state of health indicators which have been developed up to the present time, or are in the course of development, are essentially based on the variation of the two electrical parameters of current and voltage, and of the quantities related to these:
Consequently, it will be useful to have an indicator which is not temperature-dependent and is easily implemented.
Given that performance loss during cycling (under current/voltage stress) or over time (without stress) is caused by crystalline degradation of the active materials present in the electrodes, by losses of cohesion of these structures due to expansion phenomena (contraction of the particles), or by gas emissions which generate acoustic phenomena, and given that these can be detected by special sensors, the acoustic signals may be related to the state of health of the accumulator, and new state indicators in the control systems of batteries based on acoustic parameters may be envisaged.
The document EP2575205 discloses a method for detecting a change of state in a battery. This method requires a preliminary step of calibration based on a test battery of the same type as that which will subsequently be used, to determine an acoustic signature of the test battery for different internal states of the battery. The determination of these signatures requires very large storage and computing resources. The detection of a change of state in a battery in the course of use consists in detecting a modification of the acoustic signature over time and comparing the present acoustic signature with previously stored reference signatures. Here again, this method requires high computing capacity. These constraints make the method unsuitable for detecting a change of state in real time.
The object of the invention is to provide a monitoring method which can overcome the aforementioned problems while improving the monitoring methods known from the prior art. In particular, the invention proposes a battery monitoring method which is simple, reliable, non-intrusive, and economical.
According to the invention, the method for determining the state of health of a battery uses a sensor of the acoustic activity of the battery, and comprises the following steps:
According to the invention, the method for characterizing a test battery uses a sensor of the acoustic activity of the test battery, and comprises a number of successive test operations performed during successive elementary cycles of use of the test battery, each test operation comprising the following steps:
The calculation of a state of health value corresponding to an acoustic density value may be carried out on the basis of a predetermined database, according to the characterization method defined above.
The characterization method may further comprise a step of determining a functional relation which makes it possible to know the state of health of the test battery for a given acoustic density value, based on said database.
The calculation of a state of health value corresponding to an acoustic density value may be carried out on the basis of a predetermined database, according to the characterization method defined in the preceding paragraph.
At least one parameter may correspond to the detection of an acoustic event, and the acoustic density value defined for an elementary cycle may correspond to the number of events detected during the cycle.
The method may comprise, following the step of determining an acoustic density value for the elementary cycle current, a step of calculating a smoothed acoustic density value corresponding to a mean of the N most recent acoustic density values, wherein the smoothed acoustic density value may be stored in the database and/or used for the state of health calculation.
At least one parameter of an acoustic signal may be chosen from the following list:
The density value may correspond to a sum of the values of said at least one parameter of the acoustic signal.
The attached drawings show, by way of example, an embodiment of a monitoring device according to the invention.
As indicated above, all the internal phenomena contributing to the degradation of the battery's performance lead, as a general rule, to the emission of mechanical waves during the degradation of the components and the formation of gas. All these phenomena result in the emission of acoustic signals detectable by acoustic sensors in particular frequency ranges.
An acoustic emission is defined as a phenomenon of creation of transient elastic waves due to local micro-displacements within a material. In other words, this physical phenomenon can be used to detect and locate degradation which develops under the action of a mechanical stress of any kind. Thus acoustic emissions not only locate developing faults, but also provide information on their kinetics and on their development processes. The frequency range is typically between 50 kHz and 1.5 MHz.
The invention relates to the use of acoustic emission signals, emitted by a cell or a battery during its operation, particularly during its operation in an authorized voltage range. These acoustic signals are used and processed to provide information on the state of health. Depending on the state of health, the cell or battery may be considered to be non-operational for its application, or even dangerous for the user or the environment. It is also possible to correct other parameters of the battery, such as the state of charge or the state of energy, when the state of health is known.
Thus the invention is based on the analysis of acoustic signals for establishing an indicator of the state of health of the battery. For this purpose, the acoustic events are monitored continuously throughout the life of the battery, regardless of whether the battery is being used in charging or discharging phases, or is at rest. The recorded acoustic activity can be used to obtain information on the state of health of the battery, as explained below. This variation depends on the battery technology and therefore on the mechanisms of degradation affecting the materials. The analysis of the variations depends on the lithium technology used.
In the case of
In the case of
In order to implement a mode of execution of the monitoring method according to the invention, the cycling operations of a battery are “cut” into a sequence of elementary cycles. Each elementary cycle is defined by using a reference value of a quantity representative of the cycling, that is to say of the charging and discharging operations. By way of example, and as described in greater detail below, the following representative quantities may be considered: a value of capacity in Ah, a value of variation of state of charge SOC, a value of energy, or a time of use in charging/discharging. Thus start and end instants of the elementary cycle are defined, a positive and/or negative variation of the representative quantity being determined, corresponding to the chosen reference value.
This method will be more easily understood from the following illustrative examples, provided with reference to
The first case, shown in
The second case shown in
In a first example, an elementary cycle is defined by using a reference capacity value Cref which may be taken to be equal to the nominal capacity of the battery, that is to say the number of ampere-hours that can be stored in the battery in nominal conditions of battery use in terms of the current of use and temperature at the start of the battery life. It should be noted that the nominal capacity of the battery corresponds to the quantity of ampere-hours delivered during a discharge of the battery between an SOC of 100% and 0%, and to the quantity of ampere-hours that are stored during the charging of the battery between 0% and 100%.
An elementary cycle is then considered to have been completed when the integral of the current of the discharge operations, that is to say the quantity of ampere-hours delivered, identical to a value of capacity in Ah, is equal to this reference capacity value.
In the simplest example of
From a practical point of view, the method may monitor a quantity called the “discharge capacity, Cdischarge”, corresponding to the integral of the current in discharge, between an instant of reinitialization corresponding to the start of an elementary cycle and the present instant, and may determine the instant of the end of an elementary cycle as being when the discharge capacity is equal to the predefined reference capacity.
In the example of
Similarly, it is possible to define an elementary cycle by considering a quantity called the “charge capacity, Ccharge”, corresponding to an integral of the current in charging, between an instant of reinitialization corresponding to the start of an elementary cycle and the present instant.
It is also possible to consider a combination of the charge capacity Ccharge and the discharge capacity Cdischarge (called Cmean, for example) to define the start and end instants of an elementary cycle, for example by considering that an elementary cycle is terminated when the charge capacity Ccharge and discharge capacity Cdischarge have both reached the predefined reference capacity.
As a person skilled in the art will understand, the monitored quantities Ccharge, Cdischarge and Cmean are zero at the start of life, and are reinitialized whenever an elementary cycle terminates.
If required, the reference capacity value may itself be corrected, using a state of health measured over time. Thus the determination of the elementary cycles allows for the variation in the effective capacity of the battery.
In a second example, an elementary cycle is defined by using a reference value of variation of state of charge SOC, equal to 100% for example. It is then considered that an elementary cycle has been completed when the negative variation of SOC is equal to 100%, as is the case, for example, between the instants t0 and t1, and between t1 and t3 in
According to a third example, an elementary cycle is considered to be defined by a duration of use, that is to say a cumulative time of active charging and discharging phases, without taking into account any intermediate rest periods. This is substantially equivalent to a charge and discharge capacity calculation, if the charging/discharging current is constant.
In the above examples, an elementary cycle is defined on the basis of a variation of a quantity during the equivalent of a complete charge/discharge cycle, but it would be possible to consider an amplitude of variation of this physical quantity corresponding to a fraction of a complete cycle or corresponding to a number of complete charge/discharge cycles. Additionally, although the examples described in relation to
An example of a battery that can be monitored by using the method proposed by the invention is an LiAl/LiMnO2 battery, consisting of a lithium-aluminium (LiAl) intermetallic alloy, for the negative electrode, and an intercalation material, lithium manganese dioxide (LiMnO2), for the positive electrode. The reactions taking place are shown in
Using different tests on batteries of the same type, graphs such as those shown in
It should be noted that, if D is the density of acoustic events per elementary cycle, its rolling average in the elementary cycle i,
where N represents the number of elementary cycles on which the mean is calculated.
In the example shown in
When a battery of the type used in the test phase to obtain the aforementioned relation SOH=f(
An embodiment of a device 2 for monitoring a battery 1, comprising one or more electrochemical cells, is described below with reference to
The data acquisition device may comprise one or more acoustic wave sensors 3a, 3b placed, for example, in contact with an electrochemical cell, or on the casing of the battery if it is not desired to “dedicate” a sensor to one electrochemical cell.
The acquisition device 3 is intended to detect the acoustic emissions created in the battery 1 and to convert them into a signal, notably an electrical signal. For this purpose, the acquisition device is preferably placed as close as possible to the place of creation of the acoustic emissions. In particular, it is useful to position the acquisition device on a wall of the cell or of the battery, for example on one face of the cell or battery. Thus the acoustic emissions can reach the acquisition device by passing through only the components of the cell or battery. The acquisition device may therefore be fastened to a cell or to the battery. A first sensor element may be positioned on a positive terminal. A second sensor element may be positioned on a negative terminal. The acquisition device may be of the acoustic type or of another type, such as an accelerometer, the important feature being that it can detect the acoustic emissions created in the cell or battery and convert them into a signal that can be analysed. The acquisition device may be of the piezoelectric type. Notably, the acquisition device can be used to detect and convert acoustic emissions whose frequency is in the range from 1 kHz to 3 MHz, in particular from 50 kHz to 1.5 MHz.
The acquisition device further comprises, in this example, a device 3c for eliminating outlier data, which may, for example, be based on any multiple detections in the case where a plurality of sensors are used.
The signal obtained at the output of the acquisition device is a function of the phenomenon generating the acoustic emissions and of the transmission of the acoustic emissions in the cell or in the battery to the acquisition device, and a function of the conversion by the acquisition device of the signal received by the sensor or sensors into an output signal.
The output signal of the acquisition device is then sent to the signal processing device 4. For example, this signal processing device comprises a preamplifier 5, a filter, an amplifier 7, and, if required, an electrical signal shaping element which is not shown.
This processing device 4 can be used to characterize the acoustic emissions detected in the battery by analysing each acoustic signal received by means of an analysis device 8. The analysis device can be used to determine one or more parameters of the acoustic signal, as defined below, and, on the basis of these values, to obtain a state of health value of the battery by using the method of the present invention. This state of health value SOH can then be used by any other system. Notably, the state of health value may be transmitted to a human-machine interface enabling a user to be informed of the state of health of the battery.
The monitoring device comprises all the hardware and/or software elements for implementing the monitoring method proposed by the invention.
Part of the acquisition device may comprise software means. Similarly, part of the processing device, or all of it, may comprise software means.
Different embodiments of a method for determining the state of health of a battery according to the invention are described below. In a characterization method that can be executed in the factory, a relation is established, for a particular type of battery, between the state of health of the battery and a parameter reflecting the density of acoustic events in the battery. This relation can then be used to determine the state of health of a battery in the course of its life, as it is used.
The calibration method, and the subsequent method for determining the state of health of a battery using the relation defined by the characterization method, both use similar concepts and operations. The two methods “break down” the charge/discharge cycles or times into an elementary cycle, as described above. For each elementary cycle, the acoustic signals emitted by the battery are detected, and, for each acoustic signal, one or more characteristic parameters of the acoustic signal are determined. A density value D is then determined for each elementary cycle, based on the values taken by the characteristic parameter or parameters recorded for each acoustic signal measured during the elementary cycle.
It should be noted that the frequency of the peaks, hits or oscillations in an acoustic signal corresponding to a single acoustic event is to be differentiated from a frequency of occurrence of acoustic emissions over time.
On the basis of a characteristic parameter or a combination of characteristic parameters recorded for each acoustic signal during an elementary cycle, a density value D is calculated, representing the density of acoustic events recorded during the elementary cycle. In the simplest example, the density D may be equal to the number of times that the “presence” parameter is active during the elementary cycle. The density D may be equal to the sum of the amplitudes of each of the detected events, or may be equal to the sum of the products of amplitude×duration calculated for each of the events, and so on.
The density D would thus be defined as follows where Pj corresponds to the value of a parameter or a combination of parameter values recorded for a j-th acoustic signal of the elementary cycle, and nE corresponds to the number of events of the elementary cycle considered.
The density D may be a sum as in the case above, but it would be possible to use another function which would take into account the parameter value or values of each of the acoustic signals of the elementary cycle. However, in the present invention, it is essential for the function for the calculation of D to be a monotonic function, increasing or decreasing, as a function of the number of events detected in an elementary cycle.
Additionally, a density value D which is filtered (low pass) or smoothed, denoted
An example of a characterization method is described below with reference to
The method is described in greater detail below, using the flow diagram of
In an initial step 100, the cycle indicator C is initialized.
In a step 110, an acoustic event is detected.
In a step 120, one or more characteristic parameters P1 to Pm of the acoustic signal are calculated/determined, where m is an integer, and any combination of parameters P is calculated on the basis of the characteristic parameters P1 to Pm.
In a step 130, a density value D is calculated, equal to a function F of the parameters P recorded for each of the events recorded for the elementary cycle in progress. If the density D is equal to a sum of a parameter, for example the amplitude, recorded for each event, the value D is incremented whenever a new signal occurs in the elementary cycle in progress.
In a step 140, a check is made as to whether or not the current elementary cycle has terminated. If the answer is negative, the detection of the events continues, if necessary by returning to steps 110, 120 and then 130. If the answer is affirmative, the cycle indicator C is reinitialized by returning to step 100.
In a step 150, to which the method proceeds if the answer is positive in the preceding step (cycle terminated) a state of health value SOH is evaluated by means of the aforementioned associated evaluation device.
In a step 160, which may be optional if required, a smoothed density value
In a step 170, the state of health information SOHi, the recorded density value Di, and the smoothed density value
In a step 180, executed at the end of the life of the test battery, a functional relation is defined between the state of health SOH and the density values Di, or preferably the density values
The characterization method then terminates.
When a battery of the same type as the test battery is used, the functional relation found by the above characterization method can then be used to determine a state of health value as the battery is being used. An example of a method that can be used for this determination is shown in
During the use of the battery, in steps 200 to 240, the acoustic emissions are monitored and the calculations are performed according to the same method as that used, respectively, in steps 100 to 140 described above.
At the end of each elementary cycle, that is to say when the answer to step 240 is positive, a smoothed density value
In a step 260, the values Di and/or
In a step 270, a current state of health value SOHi for the cycle i is determined, on the basis of the previously calculated values Di or
According to one embodiment of the characterization method and subsequently of the method for determining the SOH, only the information on the state of health SOHi and the density Di or
According to another embodiment of the characterization method, and subsequently of the method of determining SOH, a functional relation is determined, as in step 180, between the state of health and the density Di or
If the battery which is used executes incomplete charge/discharge cycles, which is often the case, provision may be made to adapt the method of determining the state of health to allow for the type of cycles executed. In fact,
One feasible correction is to execute different kinds of cycling in characterization phases, providing, for example, “high” cycling between an SOC of 50% and 100%, and “low” cycling between an SOC of 0% and 50%. In this way, two databases and consequently two functional relations are obtained, and can be used subsequently according to the nature of the cycles executed by the battery.
Alternatively, or additionally, provision may be made to use the method for determining SOH in certain conditions of battery use only. For example, provision may be made not to estimate the SOH if the SOC in the current cycle has been mostly greater than 80%, or mostly less than 20%, or any other threshold or criterion considered acceptable according to the type of battery.
The mathematical relations used to find the state of health given the acoustic density Di or
Thus, in other words, according to the invention, the method for determining the state of health of a battery comprises a first phase of detecting and/or acquiring data in operation, followed by a second phase of determination and/or analysis and/or processing of data, notably during operation, and then a third phase of determination of the state of health based on the use of the results of the second phase.
Preferably, in the method according to the invention, in the first phase, data are detected and/or acquired during operation, and notably at least one acoustic event is detected by the sensor in the course of an elementary cycle of use of the battery, corresponding to a period of use of the battery with charging and/or discharging operations. Thus, preferably, at least one acoustic event is detected by the sensor during operation, in the course of an elementary cycle of use of the battery, corresponding to a period of use of the battery with charging and/or discharging operations.
Preferably, in the method according to the invention, in the second phase, a parameter value is determined and/or data are analysed and/or processed, notably during operation. This second phase is executed during operation. Notably, in this second phase, the value of at least one parameter is determined for each acoustic signal detected in the course of the elementary cycle of use, and an acoustic density value is calculated, for the elementary cycle of use, according to a density calculation function taking into account said at least one parameter determined for each of the acoustic signals detected in the course of the cycle, the density calculation function being a monotonic function based on the number of events detected during the elementary cycle.
Preferably, in the method according to the invention, in the third phase, the state of health is determined on the basis of the results of the second phase. Notably, a state of health value corresponding to said previously calculated acoustic density value is calculated, on the basis of a functional relation or a predetermined database, making it possible to know the state of health for a given acoustic density value.
Throughout the present document, the term “in operation” is to be interpreted as “during functioning”, or “continuously”, or “while the battery is functioning, that is to say while the battery is performing its function by supplying a load or by being recharged by an electrical power source”. Advantageously, the term “in operation” excludes phases exclusively concerned with testing, in which a battery is disconnected from the load which it usually supplies and/or is disconnected from the electrical power source by which it is usually recharged. Thus this term excludes phases of pure and/or one-off diagnosis in which the battery is isolated to undergo tests.
In the case of phases of pure and/or one-off diagnosis, a battery no longer provides its services or no longer performs its functions. It is stressed according to a particular voltage and current profile (called a “check-up” profile), this profile being very different from a typical operating profile of a battery.
Thus, by means of the method according to the invention, the battery may, at each instant or continuously, perform the functions for which it is designed, notably the essential functions of supplying a load and recharging from an electrical power source. Continuity of the service or functions of the battery is thus provided. The determination of the state of health of the battery is carried out during the operation or use of the battery.
Number | Date | Country | Kind |
---|---|---|---|
1359428 | Sep 2013 | FR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2014/070983 | 9/30/2014 | WO | 00 |