The present invention is directed to a method for monitoring at least two electromagnetic valves of an internal combustion engine in a motor vehicle in particular, an actual current being supplied to each valve independently of the other valves, and a setpoint current being defined for each valve. The present invention also relates to a corresponding device for monitoring at least two electromagnetic valves. The present invention also relates to all applications in which the valves mentioned above are replaced by any other electric consumers of the internal combustion engine.
German patent document no. 43 28 719 discusses the detection and analysis of the current flowing through an electric consumer. A fault in the consumer is detectable by comparison with predetermined setpoint values.
If such a device is to be used with a plurality of consumers, a corresponding plurality of individual analyses is required. This may entail significant expenditure.
An object of the exemplary embodiment and/or exemplary method of the present invention is to create a method of the type defined at the outset that requires only minor expenditure even for a large number of valves.
In a method of the type described herein, this object may be achieved according to the exemplary embodiment and/or exemplary method of the present invention by determining a total actual current supplied to the valves, by adding the setpoint currents to yield a total setpoint current, by comparing the total setpoint current to the total actual current, and by using the result of the comparison to monitor the valves and/or their interconnection.
Thus the analysis is no longer performed individually for each consumer, as is the case in the related art, but instead all the valves are analyzed together. This is done by determining the total actual current and adding the setpoint currents together to yield the total setpoint current. These total currents are then compared according to the exemplary embodiment and/or exemplary method of the present invention. This results in the significant advantage of an extensive simplification of the entire method and greatly reduced monitoring complexity.
Essentially all the current supplied to a certain valve may be included in the monitoring. This permits particularly accurate and thus reliable monitoring.
In a first advantageous exemplary embodiment of the present invention, the actual currents supplied to the valves are measured by at least two measuring devices and added to yield the total actual current. Thus the actual currents measured by the two measuring devices are added up here.
In a second advantageous exemplary embodiment of the present invention, the actual currents supplied to the valves are measured by a single measuring device and used further as the total actual current. In this case, there is only one measuring device that measures the total actual current directly. It is apparent that this results in less expenditure for components and also omits the addition of measured actual currents.
It is particularly advantageous if a holding current with which the particular valve is held in an end position in a stable manner is used as the actual current. This further simplifies the entire monitoring procedure without any significant loss of accuracy.
It is also advantageous if a quenching current is used as the actual current, this quenching current resulting from the electric energy remaining in the valve after shutdown of the holding current. The quenching current is thus a feedback current, so that there is also monitoring in this regard.
In an advantageous further refinement of the exemplary embodiment and/or exemplary method of the present invention, chronological successive measurements and comparisons are used to detect a faulty valve from the point in time of occurrence of the difference. Thus, with the exemplary method according to the present invention not only may a fault be detected as such but it may also be deduced that the valve is faulty.
In addition, the present invention is implemented by a computer program having program commands suitable for execution of the exemplary method according to the present invention when the computer program is running on a computer. The same thing is also true of a digital memory medium with a computer program having program commands suitable for executing the exemplary method according to the present invention.
Other features, applications, and advantages of the exemplary embodiment and/or exemplary method of the present invention are derived from the following description of exemplary embodiments and methods of the present invention, which are depicted in the drawings and/or otherwise described herein.
It is pointed out explicitly that instead of valves 11, 12, the following description may also apply to any other electric consumers of the internal combustion engine. In addition, it is pointed out that the following description may be applied not only to two valves 11, 12 shown here, but device 10 may also be used for any plurality of valves, i.e., consumers, through appropriate expansions.
Two d.c. converters 13, 14 are provided for supplying power to valves 11, 12. D.c. converter 13 is suitable for generating a booster current on an electric line 15. Accordingly, d.c. converter 14 is suitable for generating a holding current on an electric line 16. The booster current is greater than the holding current.
A measuring device for measuring the booster current and another for the holding current are interconnected in lines 15, 16. The actual currents measured by measuring devices 17, 18 are sent to a control unit 19.
An output stage 20, via which the current flow through valves 11, 12 is controlled, is provided between meters 17, 18 and valves 11, 12. This control is provided via control unit 19. The function of output stage 20, its control, and the current flow generated by it over valve 11 are explained in greater detail below with reference to
Depending on the switch positions of two switches S1, S2, there is a different current flow across valve 11. Four different switch positions resulting in four different current flows in four successive time ranges a, b, c, d may be set using two switches S1, S2. The positions of two switches S1, S2 are controlled by control unit 19 as already mentioned.
In first time range a, both switches S1, S2 are closed. This yields a current flow a, as depicted in
In second time range b, which follows time range a, switch S1 is closed and switch S2 is opened. This yields a current flow as depicted in
Switch S1 is opened in time range c and switch S2 is closed. This yields a current flow like that depicted in
Both switches S1, S2 are open in time range d which follows time range c. This yields a current flow like that depicted in
As mentioned previously, the actual current flowing to valves 11, 12 is measured by measuring devices 17, 18, and the measurement result is sent to control unit 19. Control unit 19 adds the currents measured by measuring devices 17, 18 to yield a total actual current Iaddactual. This is depicted in the top time chart in
In
Two setpoint currents I11, I12 result from the fact that switches S1, S2 of output stage 20 are triggered by control unit 19 in such a way that essentially setpoint currents I11, I12 mentioned above will have to flow across valves 11, 12. However, there is the possibility that because of some malfunction, setpoint currents I11, I12 might not actually flow or at least might be modified.
Such faults may be recognized by control unit 19 as follows:
As mentioned above, switches S1, S2 of output stage 20 are triggered by control unit 19, so control unit 19 may compute setpoint currents I11, I12 and in particular their plot over time. Control unit 19 may also add the calculated setpoint currents I11, I12. This yields total setpoint current Iaddsetpoint depicted in the bottom time chart in
As already explained previously, control unit 19 also determines total actual current Iaddactual. This total actual current Iaddactual is depicted in the top time chart in
If this comparison does not reveal any deviation between two total currents, this means that there is no fault. Setpoint currents I11, I12 calculated by control unit 19 thus in fact flow across valves 11, 12. This fault-free case occurs when total actual current Iaddactual corresponds to the solid line according to the top time chart in
However, if total actual current Iaddactual deviates from total setpoint current Iaddsetpoint, this means that there is a fault in device 10 in
If the total actual current has a curve like that shown with a dotted line for faulty total current IF1 in the top time chart in
If total actual current Iaddactual has a curve like that shown as an example as faulty total current IF2 in the top time chart in
On the basis of the time conditions of the deviation of the faulty total current, control unit 19 may not only recognize a fault as such but may also localize the fault more precisely. Control unit 19 is able to deduce on the basis of the curve of faulty total current IF2 that the booster current and free-running state of both valves 11, 12 were correct. However, the deviation in faulty total current IF2 occurs in the range of the holding currents for two valves 11, 12. Either the holding current for valve 11 or the holding current for valve 12 may have a dip that results in the deviation in faulty current IF2. There is a greater probability that the holding current has been ended too soon for valve 11 and that this has resulted in the deviation in faulty total current IF2 from expected total setpoint current Iaddsetpoint.
Thus on the whole, control unit 19 adds the currents measured by measuring devices 17, 18 to yield a total actual current Iaddactual. In addition, control unit 19 determines as a function of the triggering of switches S1, S2 of output stage 20 total setpoint current Iaddsetpoint that would have to be present on the basis of the aforementioned triggering of switches S1, S2. Control unit 19 then compares total actual current Iaddactual and total setpoint current Iaddsetpoint. If there is no deviation between them, device 10 is functioning without fault. If there is a deviation, this means that there is a fault in device 10. Control unit 19 is able to localize the fault of device 10 more precisely, in particular to limit it to one of valves 11, 12, from the time conditions, in particular from the point in time of occurrence of a deviation in total actual current Iaddactual from total setpoint current Iaddsetpoint
Remaining d.c. converter 13 is no longer provided for generating the booster current but instead is provided for generating the holding current. To do so, two switches S1, S2 are either closed simultaneously so that the holding current flows across both valves 11, 12 or switch S1 is closed and switch S2 is opened so that the holding current is quenched.
As in
A total actual current Iactual is plotted in the top time chart in
Total actual current Iactual is compared with total setpoint current Iaddsetpoint, If this comparison does not yield any deviations, this means that there is no fault. However, if there is a deviation, this indicates that there is a fault.
A faulty current IF1, which does not match total setpoint current Iaddsetpoint of the lower time chart in
Number | Date | Country | Kind |
---|---|---|---|
102 34 091.9 | Jul 2002 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/DE03/02041 | 6/18/2003 | WO |