The invention relates to a method and apparatus for utilizing forces acting at different magnitudes and in different directions such that the law of equal action between a Newtonian force and its counterforce can be annulled in the method according to the present invention and apparatus implementing the method. As, a result, also the law of conservation of impulse is annulled in the specific situation created by virtue of the present invention.
In the prior art, no method or apparatus has been devised capable of annulling the law of equal action between a Newtonian force and its counterforce.
It is an object of the present invention to provide in an apparatus such a propulsion force that exceeds the counteracting propulsion force created in the apparatus over a given period of time. The resulting difference of the propulsion forces gives a net propulsion force tending to actuate and actually actuating the apparatus to move in the direction of the net propulsion force.
The invention is based on a concept of controlling the rhythmic movement of a mass to occur in rotations about a fixed axis so that the velocity of the mass along its trajectory is changed by pulling the mass toward the axis of rotation and, respectively, releasing the mass farther away from the axis of rotation in a fashion that keeps the instantaneous speed of the mass in a given direction in regard to the. axis of rotation unchanged at all times. According to the laws of physics, this reciprocating movement of the mass first toward the axis of rotation consumes an equal amount of energy as will be released by the mass as it recedes toward its initial trajectory of rotation. This change in the speed of the mass also causes a change in the force exerted by the mass in a direction outward from the axis. Conventionally, this force is called the centrifugal force.
When the trajectory of the mass is divided into equally large sectors as seen from the trajectory center point, the mass exerts as a function of time in the opening direction of the sector a force effect on the apparatus, more specifically a propulsion force that changes as the mass moves from one sector to the next.
Summing the force vectors exerted outward from the center point of the trajectory at different instants of time in the different sectors gives a resultant vector that acts so as to move the apparatus in the acting direction of the resultant force vector.
Next, the invention will be examined in greater detail by making reference to the attached drawing, wherein
Referring to the diagrams, the embodiment of the invention illustrated therein comprises in a top plan view a horizontally mounted base 1 having a vertical shaft 2 mounted thereon and supporting an arm 3 with a mass 4 attached thereto rotating thereabout. The arm is adapted to move radially reciprocatingly actuated by a drive means 5. When the drive means pulls the arm, kinetic energy is imparted to the mass rotating about the shaft. Respectively, when the mass at the distal end of the arm is allowed to reach a more distant path, the drive means recovers the kinetic energy of the mass. The drive means operates utilizing conventional techniques such as electric and pneumatic technology.
The invention functions as follows. Two identical apparatuses according to the invention are connected adjacent to each other (
The mass center of mass 4 is actuated into motion about shaft 2 at a radius of 1 m so that the mass speed at the middle point of sector I is 10 m/s. With the help of arm 3, the drive means pulls next the mass toward the shaft so close thereto that the mass at the middle point of sector V travels at a radius of 0.25 m from the shaft. Herein, the maximum speed of the mass is 40 m/s.
This speed increase is caused by the known law of energy conservation stating that when a mass performs rotational movement along a circular trajectory, wherefrom the mass is transferred by external energy onto a new trajectory having a radius half the initial radius, the speed of the mass is doubled and, respectively, if the mass is again transferred herefrom onto a new rotational trajectory again halving the radius, the speed of the mass is increased fourfold compared with the very initial tangential speed of rotation.
In
At the middle point of sectors II, III, IV, V, VI, VII and VIII, the mass speed is equal to the speed at which the mass if freed would start a linear motion and meet at 90° angle a radius drawn from the shaft center. Herefrom the mass would start circular motion. The radius of the motion is measured from
The length of radius r is next used in computations in which a sufficiently accurate estimate is obtained for the magnitude of the force acting from the center of the shaft toward the center point of the sector by using the conventional equation of centrifugal force written as C=mv2/r, where mass m in the particular case of gravitational falling motion is m=G/g, where G is the measured weight of the object and g is the acceleration of gravity, approx. 9.81 m/s2. If the measured weight of mass m is 10 kg, the equation gives m=10 kg/9.81 m/s2=1.02 kg/m/s2.
The approximate magnitude of centrifugal force per sector over a trajectory distance equal to the circular arc length of the sector is:
When mass 4 moves over a trajectory distance equal to the circular arc length of the sector, the time required from the mass to perform the travel is the travel distance divided by the average travel speed that may be selected to be mass speed at the middle point of the given sector. This speed is obtained from the graph of
The arcuate sector lengths are measured from an enlarged diagram of
The average travel time of the mass over the arcuate path length of each sector is:
The time required by the mass per one full rotation is 0.251 s.
Knowing the average value of centrifugal force imposed on the mass with the direction of the force in each sector, the effect of the force in the direction of the sector middle point can be computed from equation V=Ct, where V is the average effect of the force (kgs), C is the average value of the centrifugal force (kg) and t is the time the mass needs to travels over the arcuate path of the sector.
Imposed on the center point of shaft 2 toward the middle point of each sector, the force effects per sector are:
V=Ct
Now expressing the forces as vectors and drawing the same as vectors of correct direction and length starting from the center point of shaft 2,
When the same vectors are redrawn in correct length and direction into a polygon shown in
To accomplish an apparatus that during its continuous operation is capable of producing propulsion force only in opposite directions, an assembly must be constructed comprising two identical apparatuses connected adjacent to each other and having their masses rotated in opposite directions. This kind of assembly is shown in
When also the travel time required by the mass to travel over the arcuate path of each sector is taken into account, the graph of
Respectively in direction B the average value of the propulsion force is 220 kg (as measured from enlarged diagram of
Accordingly, the continuously operating apparatus assembly of
It can be seen that the apparatus of
When an apparatus assembly having 13 pcs. the apparatuses of
Respectively, the graph of
In the exemplary embodiment (
The exemplary computations of this text have been carried out using the traditional equation of centrifugal force C=mv2/r, in which the unit of force is kg. This unit of force can be converted into the standardized unit of force known as Newton by way of multiplying the values of centrifugal force by 9.81 m/s2, that is, the standardized value of acceleration of gravity. Hence, the propulsion force of the continuously operating apparatus examined in the exemplary computation delivers a propulsion force of 260 kg×9.81 m/s2=2550 N.
To help understand the functionality of the invention, the apparatus discussed herein has been assumed to operate without friction and the drive means having an operating efficiency of 100%, whereby the energy imparted by the drive means to the mass is equal to the energy recovered by the drive means from the mass. The computations have been formulated so as to make it easier to understand the functionality of the invention. Obviously, the invention may be implemented using values and mass trajectories different from those of a circular path. For instance, the mass could travel along an ellipsoidal path.
The functionality of the invention has been proved using uncomplicated and easy-to-understand mathematical means giving only estimates of values that substantiate the scope and spirit of the invention. However, the proof of functionality needs only computationally obtained estimates of the force effect vectors in opposed sectors I and V of the mass path.
In the simplified embodiment of the invention discussed above, the computations have been carried out by dividing in the computations the path of the mass into 45° sectors. Obviously, computations may as well be performed by dividing the path of the mass into smaller sectors of mutually equal angles, whereby also the number of sectors increases respectively. Hereby not only the estimates of force effects given by the computations become more accurate, but also the apparatus appears to deliver a greater propulsion force than that obtained from the exemplary computations.
The computations may also be performed in alternative ways, whereby they must be accomplished with the help of more complex mathematical means that give a more accurate end result.
To a person versed in mechanical physics with capabilities in practical mechanics, it is obvious that the method and apparatus according to the invention can produce propulsion force without ejecting any mass in a direction opposite to that of the apparatus movement, whereby this kind of continuously operating apparatus needs mechanical energy only so much as is consumed via frictional losses into thermal energy, thus offering the invention a variety of different applications in which the invention can replace prior-art arrangements. One of such prior-art systems is the conventionally used machine known as a jet engine that generates a propulsion force from a fuel, whereby the consumed fuel is ejected in one direction as a mass driven by thermal energy.
Number | Date | Country | Kind |
---|---|---|---|
20012333 | Nov 2001 | FI | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/FI02/00896 | 11/13/2002 | WO |