The present specification relates generally to liquid natural gas production and, in particular, to a method for natural gas liquefaction and filtration of solidified carbon dioxide.
Generally, natural gas refers to a methane-rich gas mixture that can include carbon dioxide, nitrogen, hydrogen sulfide, other hydrocarbons, and moisture in various proportions. In at least some known applications, natural gas is used as an alternative to other known fuels such as gasoline and diesel. To be used as an alternative fuel, or to facilitate storage and/or transport, natural gas is typically processed to convert the natural gas into liquefied natural gas (LNG). Typically liquefying natural gas includes cooling the natural gas to about the liquefaction temperature of methane, which is about −161° C. under atmospheric pressure. However, since some commonly found constituents of natural gas (e.g., moisture and carbon dioxide) have higher freezing points than methane, solidification of the constituents may occur when cooled to the liquefaction temperature of methane, thereby forming a LNG-rich slurry. The LNG-rich slurry is generally unsuitable for use as alternative fuel. Impurities freezing in a heat exchanger during natural gas liquefaction also can cause operational problems during LNG production.
Conventional methods of forming purified LNG typically includes removing CO2 in the raw natural gas before cooling it to the liquefaction temperature of methane. However, known removal systems are costly to implement and generally have a relatively large ecological and/or physical footprint. Other known methods of forming purified LNG include removing the solidified CO2 from LNG via gravity separation and/or cyclone separation. However, while such removal methods are generally effective at removing relatively large solidified CO2 particles from the LNG-rich slurry, they are less effective at removing smaller particles.
Therefore, there is need for an improved method for natural gas liquefaction and filtration of solid carbon dioxide particles.
In accordance with an embodiment of the present specification, a method includes directing a refrigerant fluid mixture and a flow of natural gas through a first heat exchanger for exchanging heat between a natural gas flow path and a first refrigerant flow path of a refrigerant cycle subsystem. The method also includes expanding the flow of natural gas exiting from the first heat exchanger via a first throttle valve resulting in formation of cold natural gas vapor and a slurry including a liquefied natural gas and solidified carbon dioxide. Further, the method also includes directing the cold natural gas vapor and the slurry including the liquefied natural gas and the solidified carbon dioxide through a filter sub-assembly. Moreover, the method also includes separating the solidified carbon dioxide by the filter sub-assembly to form a purified liquefied natural gas. Finally, the method includes directing a pulse of a cleaning fluid including at least one of methane and carbon dioxide through the filter sub-assembly to remove the solidified carbon dioxide therefrom and storing the purified liquefied natural gas in a storage tank assembly.
These and other features, aspects, and advantages of the present specification will become better understood when the following detailed description is read with reference to the accompanying drawings in which like characters represent like parts throughout the drawings, wherein:
When introducing elements of various embodiments of the present technology, the articles “a,” “an,” “the,” and “said” are intended to mean that there are one or more of the elements. The terms “comprising,” “including,” and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements. Any examples of operating parameters are not exclusive of other parameters of the disclosed examples.
The first refrigerant flow path 20 includes a refrigerant fluid mixture that is capable of absorbing latent heat from the flow of natural gas in the natural gas flow path 16 through the first heat exchanger 18. Such an absorption of latent heat facilitates liquefaction of the natural gas. In a non-limiting example, the temperature of the natural gas passing through the first heat exchanger 18 may be reduced from about 101° F. to about −170° F.
In some embodiments, the system 10 also includes at least one first throttle valve 22 coupled downstream of the first heat exchanger 18 for expanding the flow of liquefied natural gas and causing reduction in pressure and temperature of the flow of liquefied natural gas. By causing a sudden drop of temperature of the natural gas, a portion of the liquefied natural gas may turn into vapor due to Joule-Thomson effect. In addition, the sudden temperature drop turns the carbon dioxide present in the natural gas into solid particles and thus, the liquefied natural gas contains carbon dioxide particles downstream of the first throttle valve 22.
In some embodiments, the system 10 further includes a filter sub-assembly 24 for separating the solid carbon dioxide particles present in the liquefied natural gas. Specifically, a slurry including the liquefied natural gas and solidified carbon dioxide is directed towards the filter sub-assembly 24. The solidified carbon dioxide is separated by the filter sub-assembly 24 to form a flow of purified liquefied natural gas. A pulse of cleaning fluid including at least one of methane and carbon dioxide is directed through the filter sub-assembly 24 to remove the solidified carbon dioxide therefrom. This filter sub-assembly 24 is also configured to separate a vapor portion of the natural gas. The system 10 further includes a storage tank assembly 25 located downstream of the filter sub-assembly 24 for storing the liquefied natural gas.
As shown in
In some embodiments, the refrigerant cycle subsystem 21 may also include a phase separator 30 located downstream of the air cooler 28 for separating a vapor portion from a liquid portion of the refrigerant fluid mixture. The vapor portion of the refrigerant fluid mixture includes a vapor stream composed of species with lower boiling points, e.g., lighter hydrocarbons, while the liquid portion includes a liquid stream having species with higher boiling points, e.g., heavier hydrocarbons.
Further, as shown in
In some embodiments, the refrigerant cycle subsystem 21 also includes a three-way valve 36 located downstream of the phase separator 30 in the second refrigerant flow path 34 and connects with the third refrigerant flow path 32 and the second refrigerant flow path 34. The three-way valve 36 is configured for controlling flow of the refrigerant fluid mixture in the second and the third refrigerant flow paths 34, 32. Particularly, the vapor portion of the refrigerant fluid mixture flowing in the second refrigerant flow path 34 is divided into two streams by the three-way valve 36. One vapor stream 33 is combined with the liquid portion of the refrigerant fluid mixture flowing in the third refrigerant flow path 32 and then the combined stream is directed to the first heat exchanger 18 while the remaining vapor stream with lower boiling points in the second refrigerant flow path 34 is also passed to the first heat exchanger 18.
The refrigerant cycle subsystem 21 includes one second throttle valve 38 located in the third refrigerant flow path 32 downstream of the first heat exchanger 18 for further expanding the refrigerant fluid mixture in the third refrigerant flow path 32. This causes the temperature of the refrigerant fluid mixture in the third refrigerant flow path 32 to decrease, thereby causing at least some of the refrigerant fluid mixture to become vapor due to the Joule-Thomson effect. The third refrigerant flow path 32 downstream of the second throttle valve 38 connects with a return flow path of the refrigerant cycle subsystem 21 to form the first refrigerant flow path 20 passing through the first heat exchanger 18. The return flow path carries the refrigerant fluid mixture of the second refrigerant flow path 34 after passing through a plurality of heat exchangers. Thus, the first refrigerant flow path 20 which forms a cold side of the first heat exchanger 18 absorbs heat from the second refrigerant flow path 34 and the third refrigerant flow path 32 which form a hot side of the heat exchanger 18. As shown, the refrigerant cycle subsystem 21 includes a third heat exchanger 40 located downstream of the second refrigerant flow 34 path and is configured to transfer heat from the second refrigerant flow path 34 to the return flow path of the refrigerant cycle subsystem 21. This leads to cooling of the vapor portion of the refrigerant fluid mixture flowing in the second refrigerant flow path 34.
Furthermore, the refrigerant cycle subsystem 21 includes one third throttle valve 42 located downstream of the third heat exchanger 40 for expanding the refrigerant fluid mixture flowing in the second refrigerant flow path 34. At the end of the expansion by the third throttle valve 42, the temperature of the refrigerant fluid mixture is further reduced below the temperature of the liquefied natural gas in the storage tank assembly 25. The refrigerant cycle subsystem 21 further includes a second heat exchanger 44 located downstream of the third heat exchanger 40 and is configured to transfer heat from a natural gas vapor flow path 46 to the refrigerant fluid mixture in the second refrigerant flow path 34 of the refrigerant cycle subsystem 21. The natural gas vapor flow path 46 carries the vapor portion of the natural gas after being separated in the filter sub-assembly 24 from the liquefied natural gas. As the result of the heat transfer in the second heat exchanger 44, the temperature of the refrigerant fluid mixture increases while a majority of the vapor portion of the natural gas vapor is condensed.
A cycle 39 is shown in
Further at step 106, the method 100 includes expanding the flow of natural gas passing out of the first heat exchanger via a first throttle valve causing reduction in pressure and temperature of the flow of natural gas and further resulting in liquefaction of the flow of natural gas. Furthermore, at step 108, the method 100 also includes filtering the flow of natural gas for separating solid carbon dioxide particles in a filter sub-assembly. The filtering of the flow of natural gas may include channeling a slurry including liquefied natural gas and solidified carbon dioxide towards a filter house; separating the solidified carbon dioxide on a filter element in the filter house to form a flow of purified liquefied natural gas; and directing a pulse of cleaning fluid through the filter element to remove the solidified carbon dioxide therefrom. The cleaning fluid includes at least one of methane and carbon dioxide Finally, at step 110, the method 100 includes storing the filtered flow of natural gas in a storage tank assembly.
The method 100 also includes recycling a refrigerant fluid mixture in the refrigerant cycle subsystem through the first refrigerant flow path, a second refrigerant flow path, and a third refrigerant flow path. This includes flowing the refrigerant fluid mixture with lower boiling point temperatures through a third heat exchanger and a second heat exchanger located downstream of the second refrigerant flow path. The method 100 also includes expanding the refrigerant fluid mixture flowing in second refrigerant flow path via a second throttle valve. Further, the method 100 includes expanding the refrigerant fluid mixture flowing in second refrigerant flow path via a third throttle valve located downstream of the third heat exchanger and prior to the second heat exchanger.
In accordance with the embodiments discussed herein, the exemplary liquefaction system enables removal of moisture from the natural gas upstream of the first heat exchanger prior to liquefaction. The exemplary liquefaction system also enables removing the solidified constituents such as solid carbon dioxide particles from the liquefied natural gas downstream of the first heat exchanger.
Furthermore, the skilled artisan will recognize the interchangeability of various features from different examples. Similarly, the various methods and features described, as well as other known equivalents for each such methods and feature, can be mixed and matched by one of ordinary skill in this art to construct additional systems and techniques in accordance with principles of this disclosure. Of course, it is to be understood that not necessarily all such objects or advantages described above may be achieved in accordance with any particular example. Thus, for example, those skilled in the art will recognize that the systems and techniques described herein may be embodied or carried out in a manner that achieves or improves one advantage or group of advantages as taught herein without necessarily achieving other objects or advantages as may be taught or suggested herein.
While only certain features of the technology have been illustrated and described herein, many modifications and changes will occur to those skilled in the art. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the true spirit of the claimed inventions.
This patent application is a continuation of co-pending U.S. patent application Ser. No. 14/515,854 filed on Oct. 16, 2014, which is incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3254496 | Roche et al. | Jun 1966 | A |
3724225 | Mancini et al. | Apr 1973 | A |
6250105 | Kimble | Jun 2001 | B1 |
6347531 | Roberts et al. | Feb 2002 | B1 |
6530240 | Kountz et al. | Mar 2003 | B1 |
7552598 | Paradowski | Jun 2009 | B2 |
8806891 | Brendeng et al. | Aug 2014 | B2 |
9003828 | Bridgwood | Apr 2015 | B2 |
20070017250 | Turner | Jan 2007 | A1 |
20100313597 | Bridgwood | Dec 2010 | A1 |
20120023947 | Kulkarni et al. | Feb 2012 | A1 |
20130219955 | Yoo et al. | Aug 2013 | A1 |
20130263623 | Lee et al. | Oct 2013 | A1 |
20130340475 | Turner et al. | Dec 2013 | A1 |
20140069931 | Kim et al. | Mar 2014 | A1 |
Number | Date | Country |
---|---|---|
102009008230 | Aug 2010 | DE |
Entry |
---|
Salako Abiodun Ebenezer.,“Removal of Carbon Dioxide From Natural Gas for LNG Production”, NTNU, Semester Project work, Institute of Petroleum Technology Norwegian University of Science and Technology, Dec. 2005, 74 Pages. |
Yumei et al., “Optimization Analysis of the Mixed Refrigerant Cycle to Liquefy the Natural Gas”, Journal of Engineering Thermophysics, vol. 21, No. 4, Jul. 2000, 4 Pages. |
Lin et al., “Natural Gas Pressurized Liquefaction Process Adopting MR Refrigeration and CO2 Removal by Anti-Sublimation”, Institute of Refrigeration and Cryogenics, Shanghai 2002 40, China, 9 Pages. |
International Invitation to Pay Additional Fees issued in connection with corresponding PCT Application No. PCT/US2015/050326 dated Dec. 17, 2015. |
International Search Report and Written Opinion issued in connection with corresponding PCT Application No. PCT/US2015/050326 dated May 4, 2016. |
Number | Date | Country | |
---|---|---|---|
20180252468 A1 | Sep 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14515854 | Oct 2014 | US |
Child | 15972374 | US |