Various rotary drill components are used for drilling boreholes or wells in earth formations. Examples include various rotary roller-cone drill bits, rotary fixed-cutter or drag drill bits, rotary bit bearings and or drilling subs. Rotary roller-cone bits generally include three roller cones mounted on support legs extending from a bit body. Rotary fixed-cutter bits generally include an array of cutting elements secured to a face region of the bit body. A hard, superabrasive material, such as mutually bonded particles of polycrystalline diamond, may be provided on a surface of each cutting element to provide a cutting surface. Such cutting elements are often referred to as “polycrystalline diamond compact” (PDC) cutters. Typically, the cutting elements are fabricated separately from the bit body and secured within pockets formed in the outer surface of the bit body. A bonding material, such as an adhesive or a braze alloy, may be used to secure the cutting elements to the bit body. A fixed-cutter drill bit is placed in a borehole such that the cutting elements are in contact with the earth formation to be drilled. As the drill bit is rotated, the cutting elements scrape across and shear away the surface of the underlying formation. Rotary drill components, particularly the drills themselves, frequently are assembled or manufactured using joints, such as various weldments and other metallurgical bonds that require wetting of a molten metal with one or more solid or semi-solid interface surfaces.
For example, fixed-cutter drill bits may include a bit body formed from a particle-matrix composite material. Such materials include hard particles randomly dispersed throughout a matrix material (often referred to as a “binder” material.) Particle-matrix composite material bit bodies may be formed by embedding a metal blank in a carbide particulate material volume, such as particles of tungsten carbide, and then infiltrating the particulate carbide material with a matrix material, such as a copper alloy. A joint, including a metallurgical bond formed between the blank and bit body, particularly the matrix material, fixes the blank to the particle-matrix composite material.
Drill bits that have a bit body formed from such particle-matrix composite materials offer significant advantages over all-steel bit bodies, including increased erosion and wear resistance, but generally have relatively lower strength and toughness that limit their use in certain applications. This lower strength and toughness can be related to defects and discontinuities, particularly cracks, in the microstructure that result from the manufacturing process. For example, U.S. Pat. No. 5,101,692 indicates that a breakdown may occur between a steel core and a tungsten carbide matrix shell, and further that differential contraction between the shell and core may cause cracking particularly in the larger products. Cracks may also initiate and propagate in service, during use of the bit in the borehole under cyclic rotational loading, and also including axial loading during periodic withdrawal of the drill string and bit. They may also develop during remanufacture or rework of the drill bit such as, for example, where a bit is damaged during service, or where as-manufactured defects are observed and corrected prior to placing the bit into service. While a particular example is provided with regard to particle-matrix composite drill bits, virtually all rotary drill components that employ metallurgical bonds can have an increased likelihood of failure related to defects and discontinuities, particularly cracks, associated with these bonds. Cracking related failures are particularly problematic in that down-hole failure of a drill string is very costly.
Various methods are known for non-destructively identifying discontinuities in rotary drill components. For example, U.S. Pat. No. 7,149,339 describes the use of non-destructive X-ray computed tomography to identify voids in down-hole equipment, such as packers.
While various methods are known for identifying discontinuities, there remains a need for effective non-destructive evaluation methods that may be employed with various earth-boring rotary drill components to effectively identify discontinuities and defects, such as cracks, and use this information to improve drill bit reliability and utilization.
In an exemplary embodiment, a method of identifying and characterizing defects in a rotary drill component is disclosed. The method includes providing a rotary drill component. The method also includes providing an ultrasonic test system comprising a phased array ultrasonic transducer, an ultrasonic signal generator, a signal processor and a storage device. Further, the method includes acoustically coupling the phased array ultrasonic transducer to a location on a surface of the component. Still further, the method includes transmitting a plurality of focused ultrasonic acoustic waves into the surface at the location using the phased array ultrasonic transducer and recording a reflected acoustic wave response to the transmitted acoustic waves corresponding to a portion of a predetermined volume of a microstructure of the component associated with the location on the surface. Still further, the method includes storing the acoustic wave response of the volume of microstructure associated with location using the storage device. Yet further, the method includes moving one of the transducer or the component relative to the other to a plurality of unique locations on the surface, each of the plurality of locations corresponding to a respective portion of the predetermined volume of the microstructure, repeating the steps of transmitting and recording for the acoustic wave response associated with each of the plurality of locations, wherein the sum of the respective portions equals the predetermined volume. Still further, the method includes processing the acoustic wave responses associated with the predetermined volume of microstructure and providing an output signal representative of the reflected acoustic wave responses to an output device, wherein the output device is configured to provide an output indicative of differences in the output signal within the predetermined volume of the microstructure.
In another exemplary embodiment, a method of determining fitness-for-use of a rotary drill component is disclosed. The method includes providing a rotary drill bit component having a predetermined volume of a microstructure. The method also includes determining the fracture toughness of the predetermined volume of the microstructure. Further, the method includes using numerical analysis to parametrically evaluate an effect on a stress intensity factor of a crack within the predetermined volume of the microstructure based on the load, crack length, crack width and crack location for a range of possible values of load, crack length, crack width and crack location. Still further, the method includes using a non-destructive evaluation method to analyze the predetermined volume of the microstructure of the rotary drill component to determine whether a crack exists within the predetermined volume, and if no crack exists, determining that the component is fit for use up to a predetermined maximum design load, and if a crack exists, determining the actual crack length, actual crack width and actual crack location. Yet further, the method includes using an assumed load, the fracture toughness and the stress intensity factor associated with the actual crack length, actual crack width and actual crack location to determine fitness-for-use of the rotary drill component.
The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee.
The following is a brief description of the drawings, wherein like reference numerals are used for like elements in the several views:
Except for photographs, the illustrations presented herein, are not meant to be actual views of any particular material, apparatus, system, or method, but are merely idealized representations of that which is disclosed herein. Additionally, elements common between figures may retain the same numerical designation.
As used herein, the term “[metal]-based alloy” (where [metal] is any metal) means commercially pure [metal] in addition to [metal] alloys wherein the weight percentage of [metal] in the alloy is greater than the weight percentage of any other component of the alloy. Where two or more metals are listed in this manner, the weight percentage of the listed metals in combination is greater than the weight percentage of any other component of the alloy.
As used herein, the term “material composition” means the chemical composition and microstructure of a material. In other words, materials having the same chemical composition but a different microstructure are considered to have different material compositions.
As used herein, the term “tungsten carbide” means any material composition that contains chemical compounds of tungsten and carbon in any stoichiometric or non-stoichiometric ratio or proportion, such as, for example, WC, W2C, and combinations of WC and W2C. Tungsten carbide includes any morphological form of this material, for example, cast tungsten carbide, sintered tungsten carbide, and macrocrystalline tungsten carbide.
Particle-matrix composite bit bodies are used in earth-boring drill bits under very extreme conditions, including extremes of cyclical loading due to axial and rotation movement of the drill string. Under these extreme use conditions, both partial and complete separation of the bit bodies has been observed due to cracking in certain highly stressed regions. One region of the bit bodies where cracking has been observed is the area surrounding the blank, particularly the metallurgical bond between the particle-matrix bit body and steel blank that attaches the bit body on one end and a drill shank on the other end. In particular, cracking has been observed to occur in the chamfer region of the blank which provides the interface and metallurgical bond between the blank and bit body. The cracks generally are hidden within the bit body in the joint or metallurgical bond between the crown and blank. Examination of the microstructure of these joints has indicated that grain boundary intermetallic compounds and separation may be associated with these defects. Failure of the cracks has been encountered during, for example, during tensile “over pulls”, where the tensile load exceeds a design maximum. Discontinuities in the body-blank joint, depending upon the size, location and frequency, can diminish the reliability of the bit in service. These cracks sometimes exist in as-manufactured particle-matrix drill bits. They have also been observed to initiate and propagate down-hole while the drill bits are in service. They have further been observed to exist following remanufacture of the drill bits after failure in service, or following rework of drill bits in conjunction with the manufacturing process, e.g., when a bit body does not meet manufacturing acceptance criteria. Such cracking may occur where the metallurgical bond between the bit body and blank is affected, e.g., during solidification of the metallurgical bond along this interface during manufacturing, or resolidification during remanufacturing or rework. Cracks may also initiate and propagate in service under load at various discontinuities in the metallurgical bond between them. Given possible existence of cracks throughout the life cycle of particle-matrix composite bit bodies, there is a need to non-destructively assess the metallurgical bonds used to attach them to determine whether a crack, or plurality of cracks, exist, and if a crack exists, to also assess its potential impact on the desired use of the bit in a given application, or stated differently, the fitness-for-use of the bit in a given application or range of applications.
Applicant's have discovered a non-destructive evaluation (NDE) method using phased array ultrasound that may be used to identify, image and measure PDC bit chamfer-area discontinuities, as well as a method of determining PDC bit chamfer-area fitness-for-service using fracture mechanics concepts, characteristics of the discontinuities that may be measured using the aforementioned method, and anticipated service loads. These methods are also applicable to other rotary drill components that also have metallurgical bonds or other features. For a given particle-matrix-composite PDC bit and for an assumed load, chamfer-area fitness-for-service can be inferred from: (1) discontinuity characterizations derived using non-destructive evaluation (NDE) techniques, (2) empirically-determined or numerically determined interface fracture toughness and (3) stress intensity factors developed using numerical methods.
Referring to
An exemplary embodiment of an earth-boring rotary drill bit 10 having a bit body 12 that includes a particle-matrix composite material is illustrated in
The particle-matrix composite material may include any suitable particle-matrix composite material that has the desired characteristics and material properties for the desired drilling application. In an exemplary embodiment, the matrix material may include a pure metal or metal alloy. In another exemplary embodiment, the matrix material may include a Cu alloy, and more particularly a Cu—Mn—Zn alloy. Suitable Cu alloys, including Cu—Mn—Zn alloys, are described in U.S. Pat. No. 5,000,273, which is hereby incorporated by reference herein in its entirety. This patent describes a binder (matrix) comprising about 5-65% by weight of manganese, up to about 35% by weight of zinc, and the balance copper. More particularly, it describes a binder comprising 20-30% by weight of manganese, about 10-25% zinc, and the balance copper. Even more particularly, it describes a binder comprising about 20% by weight of manganese, about 20% by weight of zinc and the balance copper, as well as a binder composition comprising about 20% by weight of manganese, about 25% by weight of zinc, and the balance copper. The binder alloys described in this patent may also comprise up to about 5% of an additional alloying element, where the alloying element is selected from the group consisting of silicon, tin and boron, and combinations thereof. Another exemplary Cu—Mn—Zn alloy also comprises Ni as an alloying constituent, more particularly Ni in an amount up to about 16% by weight. Many metals and metal alloys, including the various Cu alloy material compositions described herein, may be used as the matrix material for crown 14, and any suitable combination of particles and matrix materials may be used to make the particle-matrix composite material of crown 14. The particle-matrix material of the crown 14 may include a plurality of hard particles dispersed randomly throughout the matrix material. The hard particles may comprise diamond or ceramic materials such as various carbides, nitrides, oxides, and borides (including boron carbide (B4C)) and combinations of them, such as carbonitrides. More specifically, the hard particles may comprise carbides and borides made from elements such as W, Ti, Mo, Nb, V, Hf, Ta, Cr, Zr, Al, or Si. By way of example and not limitation, materials that may be used to form hard particles include tungsten carbide (WC, W2C), titanium carbide (TiC), tantalum carbide (TaC), titanium diboride (TiB2), chromium carbides, titanium nitride (TiN), vanadium carbide (VC), aluminum oxide (Al2O3), aluminum nitride (AlN), boron nitride (BN), and silicon carbide (SiC). In an exemplary embodiment, when using Cu alloy materials as the matrix, it is particularly desirable to use tungsten carbide particles in the various morphologies described herein to form the particle-matrix composite material. Furthermore, combinations of different hard particles may be used to tailor the physical properties and characteristics of the particle-matrix material. The hard particles may be formed using techniques known to those of ordinary skill in the art. Most suitable materials for hard particles are commercially available and the formation of the remainder is within the ability of one of ordinary skill in the art.
As described herein, a bit body 12 is configured to carry one or more cutters 34 for engaging a subterranean earth formation. The bit body 12 includes a particle-matrix composite material as described herein having a plurality of hard particles dispersed throughout a matrix material.
As also illustrated in
The bit body 12 includes wings or blades 30, which are separated by external channels or conduits also known as junk slots 32. Internal fluid passageways 42 or nozzle ports extend between the face 18 of the bit body 12 and a longitudinal bore 40, which extends through the steel shank 20 and partially through the bit body 12. Nozzle inserts (not shown) may be provided at face 18 of the bit body 12 within the internal fluid passageways 42.
A plurality of polycrystalline diamond compact (PDC) cutters 34 may be provided on the face 18 of the bit body 12. The PDC cutters 34 may be bonded to the face 18 of the bit body 12 after the bit body 12 has been cast by, for example, brazing, mechanical, or adhesive affixation. Alternatively, the cutters 34 may be bonded to the face 18 of the bit body 12 during forming of the bit body 12 if thermally stable synthetic or natural diamonds are employed in the cutters 34. The PDC cutters 34 may be provided along the blades 30 within pockets 36 formed in the face 18 of the bit body 12, and may be supported from behind by buttresses 38, which may be integrally formed with the crown 14 of the bit body 12.
The metal blank 16 shown in
Referring to
Method 100 also includes transmitting 140 a plurality of focused ultrasonic acoustic waves into the surface 41 at the location 74 using the phased array ultrasonic transducer 62 and recording a reflected acoustic wave response to the transmitted acoustic waves corresponding to a portion of the predetermined volume of the microstructure of the component, as described herein, associated with the location 74 on the surface.
Method 100 also includes storing 150 the acoustic wave response of the volume of microstructure associated with the location 74 using the storage device 68; and moving 160 one of the transducer 62 or the component, such as rotary drill bit 10, relative to the other to a plurality of unique locations 74.1, 74.2, 74.3, 74.4 . . . 74.n cover the axial and rotation extent of bore surface 41 of interest, each of the plurality of locations 74.1-74n, corresponds to a respective portion of the predetermined volume of the microstructure.
Method 100 and step 160 further includes repeating the steps of transmitting 140 and recording for the acoustic wave response associated with each of the plurality of locations 74-74n, effectively as a scan of the surface, wherein the sum of the respective portions equals the predetermined volume; and processing 170 the reflected acoustic wave responses associated with the predetermined volume of microstructure and providing an output signal representative of the reflected acoustic wave responses to an output device 69, wherein the output device 69 is configured to provide an output indicative of differences in the output signal within the predetermined volume of the microstructure, such as a human readable image on a computer display.
Determination of defect dimensions from the scan results required calibration of the tester using calibration components 80 as standards of comparable size and material characteristics with defects having a known length, width and location. This may be performed, for example, using two calibration bits, one made entirely of steel and one made from a particle-matrix composite shell and steel core that include a series of radially oriented flat-bottom holes 82 of varying and known diameters at various axial positions on the 30-degree chamfer, as shown in
The defects and discontinuities, such as cracks, identified and characterized with respect to crack length, width and location or bias using method 100 may be also be used to determine fitness-for use of a drill bit 10 that has been so characterized. The fitness-for-use may include identifying whether a given drill bit 10 is suitable for use in view of a design limit, e.g., maximum axial or torsional load, for a given application. Similarly, establishing fitness-for-use may include grading a drill bit 10 for use (or exclusion from use) in one of several different applications, depending on the load requirements for those applications. For example, the maximum design loads for drilling in various earth strata ranging from less resistant glacial till and sedimentary deposits, having relatively lower loads, to extrusive igneous strata, having relatively higher loads, can be established empirically, or using numerical analysis, or a combination thereof, and a fitness-for-use of a drill bit 10 for the application or strata may be determined using information developed by application of method 100. Establishing fitness-for-use may be used with all manner and use conditions of rotary drill bits 10, or other rotary drill components, including those in the as-manufactured, post-service, post-repair, post-rework or other conditions, including a combination of thereof.
A method 200 of determining fitness-for-use of a rotary drill component includes providing 210 a rotary drill component having a predetermined volume of a microstructure, wherein there is a potential or non-zero probability for the existence of a crack within the predetermined volume. As noted herein, for a rotary drill bit 10, including a particle-matrix composite drill bit 10, a predetermined volume of the microstructure that a potential or non-zero probability for the existence of a crack within the predetermined volume includes the chamfer region proximate the chamfer 17 or tang 19.
The method 200 also includes determining 220 the fracture toughness of the predetermined volume of the microstructure. The load behavior, such as the tensile behavior, to failure of drill bit 10 is needed in conjunction with the implementation of method 200, particularly the load behavior, such as the tensile behavior of metallurgical bond 13 and the blank 16/crown 14 interface. This may be determined empirically by pulling drill bits to failure while measuring the load deflection behavior, such as by fastening poisson strain gages proximate the joint of interest. For example, pre or post-service bits may be tested using a fixture, such as that shown schematically in
Several three-material (AISI 1018 steel, matrix material, particle-matrix composite material) “½-T” compact-tension specimens were machined from special drill bits featuring square pyramidal chamfer interfaces (a schematic illustration is shown in
The method 200 also includes using 230 finite element analysis to parametrically evaluate an effect on a stress intensity factor of a crack within the predetermined volume of the microstructure based on the load (e.g., tensile load, compressive, torsional or mixed), crack length, crack width and crack location for a range of possible values of load (e.g., tensile load, compressive, torsional or mixed), crack length, crack width and crack location. The parametric evaluation may test the effect of the embedded crack dimensions, including the scan length (2c), index width (2a) and bias (d), or radial distance of the defect from the chamfer 17 or tang 19 for a load range of about 20 klbf to about 960 klbf. A standard production drill bit 10 may be utilized to develop the model for the evaluation of the embedded crack analysis. In the example shown in
Referring to
Referring to
Referring to
Referring to
Referring to
Method 200 also includes using 240 a nondestructive evaluation method to analyze the predetermined volume of the microstructure of the as-manufactured rotary drill bit component to determine whether a crack exists within the predetermined volume, and if no crack exists, determining that the component is fit for use up to a predetermined maximum design load, and if a crack exists; measuring the actual crack length, actual crack width and actual crack location; and using an assumed load, the fracture toughness and the stress intensity factor associated with the actual crack length, actual crack width and actual crack location to determine the fitness-for-use of the rotary drill bit. This step may be performed as previously described herein using method 100.
The method 200 also includes using 250 an assumed load, the fracture toughness and the stress intensity factor associated with the actual crack length, actual crack width and actual crack location to determine the fitness-for-use of the rotary drill component.
Referring to
Referring to
Referring to
Referring to
Verification of the FAD has been demonstrated by recovering drill bits from service. Each bit was imaged using PAUT. The images (C-scan—unwrapped chamfer projections) were reviewed and the discontinuities were measured (see
In conjunction with preparation of the Failure Analysis Diagrams and estimating stress intensity parameters from analytical models, the following observations were noted. As the separation between adjacent circumferential discontinuities approaches 30 degrees (from above) for loads of 320 klbf and less, the stress intensity factors (KI) for each is affected by proximity of the other (see
A method for imposing fitness-for-use criteria during inspection involves filtering the c-scan image (−6 dB) and overlaying a template representative of the “safe” limits on a visual display output, either on an electronic output display device (see
The image represents a bit that would be considered “unsafe” or not fit-for-use due to discontinuity (1) proximity to the bit OD (upper right) and (2) aggregate length exceeding 4″ (83.3 degrees). As described herein; however, this bit may be fit-for-use in applications having lesser load limit requirements. Therefore, specifying a reduced-severity application for the bit may be an alternative to repair or rework. While this describes a relatively straightforward method of using image analysis to apply the service fitness-for use limits, it will be understood that the limits may also be applied using numerical analysis of the data, and all manner of output or indication of either a “safe” or “unsafe” condition for a given application for which the service limits have been used to perform the numerical analysis. The output in any suitable form, or a listing that provides more detailed comparison data. For example, various tabular or spreadsheet outputs may be provided to indicate a “safe” or “unsafe” condition. As another example, audible tones, or visual indicators, such as lights may be used to indicate a “safe” or “unsafe” condition.
A method has been developed and demonstrated that describes the non-destructive imaging of the chamfer interface region of a particle-matrix composite PDC bit, the characterization of the imaged discontinuities, the empirical determination of the interface joint fracture toughness, the analytical determination of the stress intensity factors in the region around the discontinuities and the development of a failure analysis diagram (FAD). The FAD is used to determine fitness-for-service of the bit based on the presence or absence of embedded discontinuities and the characteristics, including length, width and location.
While the description herein presents certain preferred embodiments, those of ordinary skill in the art will recognize and appreciate that it is not so limited. Rather, many additions, deletions and modifications to the preferred embodiments may be made without departing from the scope of the invention as hereinafter claimed. In addition, features from one embodiment may be combined with features of another embodiment while still being encompassed within the scope of the invention as contemplated by the inventors. Further, the invention has utility in drill bits and core bits having different and various bit body profiles as well as cutter types, as well as other rotary drill components.
The foregoing invention has been described in accordance with the relevant legal standards, thus the description is exemplary rather than limiting in nature. Variations and modifications to the disclosed embodiments may become apparent to those skilled in the art. Accordingly, the scope of legal protection afforded will be determined in accordance with the following claims.