The invention applies to medicine, particularly to functional diagnostics, and allows early detection of cardiovascular diseases as well as the monitoring of the effectiveness of treatment received by the patient. The invention assesses the state of endothelial function and, based on this assessment, addresses the need of early diagnosis of cardiovascular disease. This invention can be used for widespread testing of the population.
As of late, the need for early cardiovascular disease detection has become more and more relevant. For this end a wide spectrum of means and methods described in patent and scientific literature is used. For example, the U.S. Pat. No. 5,343,867 describes a method and apparatus for early diagnosis of atherosclerosis using impedance plethysmography to detect an irregular pulse wave in the arteries of the lower extremities. It is shown that blood flow parameters depend on the outside pressure applied to the artery under investigation. The maximum amplitude of the plethysmogram is in large determined by the size of the transmural pressure, which is defined as the difference between internal arterial pressure and the pressure applied externally by the cuff. Maximum amplitude is reached when the transmural pressure drops to zero.
From the perspective of the structure and physiology of blood vessels, this can be imagined to occur in the following manner: Pressure from the cuff transfers to the exterior of the artery and counterbalances the pressure of the interior of the artery wall. With this, the compliance of the arterial wall increases dramatically and the passing pulse wave stretches the artery to a large diameter, i.e. the increase of the arterial diameter at the same pulse pressure becomes significant. This phenomenon can be observed on an oscillometric curve, recorded during the taking of arterial pressure. The peak of the oscillometric curve corresponds to the moment when the pressure inside the cuff equals the mean arterial pressure.
U.S. Pat. No. 6,322,515 describes a method and apparatus for determining a set of cardiovascular parameters which are used for the evaluation of the state of endothelial function. Photodiodes and photoreceptors are used as pulse wave sensors, and an analysis of photo-plethysmographic waveforms is made. The measurements for these waveforms are taken at the observed artery before and after the test with reactive hyperemia. During the recording of these waveforms, the cuff, where the pressure is maintained at 70 mmHg, is placed on the digit, over the optical sensor.
U.S. Pat. No. 6,939,304 reveals a method and apparatus for non-invasive assessment of endothelial function using the photoplethysmography (PPG) sensor.
U.S. Pat. No. 6,908,436 reveals a method for the assessment of endothelial function by measuring the spreading of the pulse wave. For this a two-channel plethysmograph is used, sensors are mounted on one of the phalanges of the finger, and an occlusion is created with the help of the cuff placed on the shoulder. Changes in the state of the arterial wall are assessed based on the duration of delay in the spreading of the pulse wave. If the duration of the delay is 20 ms or longer, the delay is considered to confirm normal endothelial function. The duration of the delay is established by comparing it with the PPG waveform which is measured on the arm not influenced by the occlusion test. However, this method falls short when it comes to determining the delay of displacement in the area of the minimum directly before systolic growth, i.e. in the area which is to a significant extent variable.
The most analogous method and apparatus to the one described below is the method and apparatus for non-invasive evaluation of the physical state of the patient described in patent #2,220,653 of the Russian Federation. The method consists of the following: First a control of the peripheral arterial tone is established by distributing the pulse of the cuff across several sensors and raising the pressure in the cuff to 75 mmHg. Then arterial pressure is measured by raising the pressure in the cuff above the systolic pressure and keeping it there for five minutes. Pulse wave measurements are further taken on both arms by the PPG method. Finally the PPG waveform is analyzed with regard to its amplitude by comparing its values before and after the occlusion and determining the increase of the measured output. This apparatus includes a sensor for measuring pressure with the cuff, a heating element for heating the surface of the observed region of the body, and a processor for processing the measured output.
However, this method and this apparatus are not able to provide reliable results due to the low precision of measurements and their dependency on the fluctuating blood pressure of the patient.
The endothelial dysfunction occurs in the presence of various risk factors for cardiovascular disease (CVD), such as high cholesterol levels, arterial hypertension, smoking, age and others. It is established that endothelial cells is the organ-target for the pathogenic realization of factors contributing to the risk of CVD development. The assessment of endothelial function acts as the “barometer” which allows early diagnosis of CVD. Such a diagnostic approach will allow a departure from the current approach were a set of biochemical tests must be administered to the patient (determining the levels of cholesterol, high and low-density lipoproteins, and others) in order to detect the presence of risk factors. During the early stages of CVD it is economically sound to screen the population using internal indicators for the risk of disease development. One such indicator is the state of endothelial function. The assessment of this state is also extremely relevant for the quality assessment of received therapies.
The goal of this invention is to create a physiologically-based non-invasive method and apparatus for reliably determining the state of endothelial function in the patient. This method and apparatus will offer an individualized approach based on the particular conditions of the patient. The method and apparatus will be based on a system of conversion, amplification, and recording of the PPG output during the onset of the optimal magnitude of the established pressure or pressure locally applied to the observed artery before and after the occlusion test.
The technical result, which is achieved with the use of the aforementioned device and apparatus, is centered on reliable assessment of endothelial function regardless of the arterial pressure of the patient.
In terms of method, the technical result is achieved through a series of steps. First, the transmural pressure in the artery is lowered. Then the amplitude of plethysmographic output is measured at various pressures. Once the pressure at which the amplitude of the PG signal is maximal is established, the pressure is lowered to a predetermined percentage of the maximal amplitude. Finally, an occlusion test is performed for at least five minutes. During this test a pressure is created in the cuff which is placed on the observed region of the extremity. This pressure must exceed the measured systolic pressure by at least 50 mmHg.
The technical result is amplified because the transmural pressure is lowered when the pressure-generating cuff is placed on a particular region of the extremity.
The pressure on the extremity is raised gradually every five to ten seconds by increments of 5 mmHg. At each step the amplitude of the PG output is measured and recorded.
A mechanical pressure is locally applied to the extremity in order to lower the transmural pressure in the observed artery.
In order to lower the transmural pressure in the observed artery, the hydrostatic pressure is lessened by raising the extremity a specified height above the level of the heart.
The intensity of the transmural pressure is established when the amplitude of the PG output is 50% that of the maximal PG output. This pressure is created in the cuff which is placed in close proximity to the observed artery. Then super-systolic pressure is created and the plethysmographic output is recorded.
After at least five minutes of exposure to the occlusion cuff placed near the observed artery, the pressure in the cuff is lowered to zero. The changes in the PG output reading are recorded simultaneously by the reference channel and the monitoring channel for at least five minutes.
After the occlusion test, the recorded plethysmographic signal is analyzed using both the amplitudal and timely analyses based on the data collected through the reference and monitoring channels.
During the amplitudal analysis the heights of the amplitude of the output from the reference channel are compared to those collected from the monitoring channel. Also, the growth rate of the amplitude in the monitoring channel is analyzed. Finally, the amplitude of the output recorded during various transmural pressures is compared to the maximal amplitude of the output recorded after the running of the occlusion test.
During the timely analysis, plethysmogrphic waveforms collected through the reference and monitoring channels are compared. The output is then normalized and the delay time or phase change is determined.
The technical result in the device is achieved by the three parts, or blocks, of the device. The first of these is a double-channeled sensor block which detects pulse wave signals from peripheral arteries. The second is a pressure block which creates gradually increasing pressure in the blood pressure cuff. The final block is an electronic block which measures the pressure created in the cuff. This pressure corresponds to the maximal amplitude of the PG signal. Along with measuring pressure in the blood pressure cuff, the electronic block also operates the pressure block, which creates pressure in the cuff equal to an assigned percentage of the increase in maximal amplitude. The sensor block is connected to the electronic block, which is in turn hooked up through an outlet to the pressure block.
The technical result is amplified because the pressure block is able to create pressure which is increased gradually by increments of 5 mmHg and time increments of five to ten seconds, in the cuff.
The sensor block in each channel includes an infrared diode and a photoreceptor. Both of these devices are situated so that they are able to read the light signal passing through the observed field.
The infrared diode and the light receptor are also able to sense and record the diffused light signal reflected off the observed field.
The sensor block also includes impedancemetric electrodes, or Hall sensors, or an elastic tube filled with electro-conductive material.
The light receptor is connected to a filter which filters pulse wave component out of the general signal.
The device also includes orthogonally-placed polarized filters which protect the photoreceptor from extraneous exposure to light.
The sensor block finally includes a means for maintaining a set temperature of the observed region of the body.
The device has either a liquid-crystal screen for displaying the results of endothelial tissue assessment, or an interface system connected to the electronic block for transferring the collected data to a computer.
The essence of the invention and its ability to provide certain results will be easier understood through an example of usage. In this example there will be references made to the drawings below.
Finally,
The apparatus (
The electronic block defines the pressure in the cuff (1) which corresponds to the maximal amplitude of the PG signal. This block also controls the pressure block which generates pressure in the cuff (1) equal to a predetermined percentage (50%) of the maximal growth of the pressure magnitude. The sensor block can be created with two different variations. The first variation has the infrared light diode (2) and the photoreceptor (3) stationed on opposite sides of the observed region of the extremity in order to be able to record light signals passing through the observed field. The second variation has the infrared diode (2) and the photoreceptor (3) stationed on the same side of the observed vessel.
Also, the sensor block can be made with impedancemetric electrodes, Hall sensors, or an elastic tube filled with electro-conductive material.
The assessment of endothelial function is founded on the PG output readings obtained by the sensor block which is set up on the upper extremity of the observed patient. The signal coming from the cuff is electrically converted as the pressure increases linearly in the cuff (1) until maximal amplitude of the signal is reached. After this the magnitude of the pressure in the cuff or the locally-applied pressure is fixed and the occlusion test is run. During this procedure the sensor block is set up on the internal side of the cuff (1) or is placed at the end of the device which applies pressure in the area where the artery protrudes on the surface of the skin. A reverse connection based on the amplitude of the PG output is used for automatically establishing the aforementioned pressure. During this procedure the PG signal is sent from the digital analog converter (8) through control (9) to the compressor (11) located in the pressure block.
The occlusion test is done using the cuff which is in close proximity (shoulder, forearm, wrist) to the observed artery (shoulder, radial, or digital artery) At the same time the signal received from the other extremity, where the occlusion test is not done, is used as a reference.
The method for assessing the state of endothelial activity of the observed patient has two major stages. During the first stage, a set of plethysmographic waveforms is recorded as the cuff (1) generates various pressures (or various pressures are applied to the observed artery). The second stage comprises the occlusion itself. The first stage provides information on the elastic qualities of the arterial channel. This information is then used to decide between applying cuff pressure or external pressure during the occlusion test. The measurements of the amplitude of the PG signal taken during the effects of the applied pressure describe the tone quality of smooth muscle in the artery as well as its elastic components (elastin and collagen). Locally-applied pressure us accompanied by changes in transmural pressure, whose magnitude is determined by the difference between arterial pressure and the externally applied pressure. When transmural pressure is weakened, the muscle tone of smooth muscle tissue lowers as well. This lowering is accompanied by the widening of arterial channels. Conversely, when transmural pressure is raised, the arteries become narrower. In this lies the myogenic regulation of blood flow, aimed at maintaining optimal pressure in the microcirculatory system. This is the reason why during changes in the magistral vessel from 150 mmHg to 50 mmHg, the capillary pressure remains practically unchanged.
Changes in the muscle tone of smooth muscle tissue are expressed not only in the narrowing or dilation of arteries, but also in the increased stiffness or compliance of artery walls. Which the lowering of transmural pressure, the smooth muscle apparatus of blood vessel walls relaxes to a certain extent. This relaxation can be seen on the PPG waveform in the form of an increased signal amplitude. Maximal amplitude is reached when the transmural pressure drops to zero. Schematically this is shown in
This dynamic of the changes in the amplitude of the signal during different transmural pressures can be linked only to particulars of visco-elastic qualities of the arterial channel in healthy individuals as well as in individuals suffering from arteriosclerosis in various locations. The smooth muscle tension of the artery can be considered the predominantly viscous component, while the strands of elastin and collagen clearly serve as the elastic components in the structure of vessel walls. By lowering the smooth muscle tension as the reading of the transmural pressure approaches zero, we lessen the input of the viscous component of smooth muscle to the deformation curve. This detailed technique allows a more thorough analysis of the deformation curve of elastic components of artery vessel walls. Also this technique is more advantageous for recording phenomena of reactive hyperemia which occurs after the occlusion test.
The magnitude of diameter increase in the observed artery is believed to be linked to the functioning of endothelial cells. The increase of the pressure during the occlusion test results in an increase of nitric oxide (NO) production by endothelial cells. This phenomenon is called “flow-induced dilation”. If the normal function of endothelial cells is deteriorated, their ability to produce nitric oxide, along with other vaso-active compounds, is diminished. This in turn blocks the vasodilation of vessels. In this situation a full-fledged reactive hyperemia does not occur. At this time this phenomenon is used to reveal the disruption of normal endothelial function, i.e. to reveal endothelial dysfunction. The flow-induced dilation of the vessel occurs as a result of the following order of events: occlusion, blood flow increase, change in pressure acting on endothelial cells, nitric oxide production (as well as adaptation to the increased blood flow), and finally nitric oxide acting on the smooth muscle.
Maximal blood flow volume is reached 1-2 seconds after the removal of the occlusion. It is important to note that during simultaneous monitoring of both blood flow volume and artery dilation, the blood flow increases first and only then does the diameter of the vessel change (
The assessment of the occlusion test results, in terms of reactive hyperemia, can be done not only in the shoulder artery, but in smaller vessels as well.
In order to measure flow-dependent dilation, the optical method was used. This method is based on the increase in the observed artery. The incoming pulse wave stretches the artery walls, thereby increasing the diameter of the vessel. Since during the PPG the optical sensor records the increase in blood flow, (rather than changes in the vessel diameter), which is equal to the square of the radius, the measurement can be made with a high level of precision.
Before taking the initial measurements, the compressor (11), following the signal of the control (9), generates a pressure in the cuff (1). The pressure increases gradually, with each step of 5 mmHg lasting 5-10 seconds. As the pressure increases, the transmural pressure drops, reaching zero when the pressure in the cuff equals that of the observed artery. At each step the PPG signal coming from the photoreceptor (3) is recorded. The signal sent from the converter (4) is increased in the amplifier (5) and filtered in the filter (6) where static having the industrial frequency of 50 Hz, along with its harmonics, is screened out. The most significant signal amplification is created by the scalar (instrumental) amplifier. The amplified voltage is sent to the digital analog amplifier (8) and then through the USB interface (10) into the computer. The control (9) determines the pressure at which the signal reaches maximum amplitude. In order to better distinguish between the signal and background static, the measurements are taken synchronously.
The procedure for assessing endothelial activity can be divided into two parts:
1. The transmural pressure is lowered by external pressure applied to a region of the finger (either by the cuff using air, an elastic band, or a mechanical compression), or by changes in the hydrostatic pressure as the extremity is raised to a particular height. The latter procedure can fully replace the pressure applied from the exterior to the vessel wall. In the simplified version of endothelial state assessment, one can eliminate the complex automated system and simply raise and lower the arm. As this is done, one can measure the average blood pressure based on the maximal amplitude of the plethysmographic signal, locate the linear section of the compliancy curve (50% of the maximal growth), and then carry out the occlusion test. The only shortcoming in this approach is the necessity to raise the arm and especially having to run the occlusion test with the arm still in that upraised position.
As the transmural pressure is lowered, the pulse component of the PPG grows. This growth corresponds to the increase in the compliancy of the observed artery. When the gradually-increasing pressure is applied to the finger, one can see the expression of the auto-regulated reaction, and, accordingly, select the optimal conditions (based on the magnitude of the transmural pressure) for the occlusion test (by choosing the steepest part of the curve describing the compliancy of the artery).
2. The artery is closed off by applying super-systolic pressure (of 30 mmHg) for five minutes. After rapidly decreasing the pressure in the cuff set up on the observed artery, the dynamic of the PPG waveform is recorded (with the amplitudal and timely analyses in mind). The changes in the PG signal are recorded simultaneously along the reference and monitoring channels for at least three minutes. During the amplitudal analysis, the magnitude of the amplitudal signal is compared between the reference and monitoring channels, the rate of amplitudal signal increase in the monitoring channel is analyzed, and the relationship between amplitudal signals is established. Also, the maximal amplitude measured during various transmural pressures is compared to the maximal magnitude of the signal recorded after the occlusion test. During the timely analysis the plethysmographic waveforms measured through the reference and monitoring channels, are compared, the signal is normalized, and finally the time of delay or the phase shift is established.
The amplitude of the PPG signal was maximal when the transmural pressure was at zero (that is, the pressure applied to the vessel externally was equal to the average arterial pressure). The calculation was made as follows: diastolic pressure plus ⅓ of the pulse pressure. This arterial response to the externally applied pressure is not dependent on the state of endothelial tissue. The method of choosing the pressure to be applied externally to the artery allows one to test the dynamic of the PPG waveform at the moment of reactive hyperemia in the most optimal area of the artery's compliancy. Also this method has its own intrinsic diagnostic value: Information concerning the rheological characteristics of the artery can be derived from the measurements of a family of PPG curves that are taken at various transmural pressures. This information helps separate the changes linked to the auto-regulative effect of the smooth muscle apparatus in artery walls when it comes to increasing the artery diameter, from the elastic attributes of the artery itself. The diameter increase in the artery, caused by the increased volume of blood found in the observed region, leads to the growth of the constant component of the curve. The component of the curve which represents the pulse also reflects the increase of blood flow volume into the systole. The amplitude of the PPG is determined by the level of compliancy of the arterial wall as pulse wave pressure passes through it. The open space inside the artery itself does not affect the amplitude of the PPG signal. Despite some observed correlation between the one and the other, a complete correlation between the diameter of the vessel and its level of compliancy during the measuring of the transmural pressure is not observed.
At low transmural pressure the artery wall becomes less stiff than it is at normal physiological levels of arterial blood pressure.
The optimization of the transmural pressure test significantly increases its sensitivity and thus allows the detection of pathologies at the earliest stages of endothelial tissue dysfunction. The high sensitivity of the test will effectively assess the success of pharmacological therapy administered to the patient and directed toward the correction of endothelial function.
When pressure in the cuff was raised to 100 mmHg, the output was also constantly increasing, reaching its amplitudal maximum at 100 mmHg. Further increase in cuff pressure lead to a decrease in the amplitude of the PPG output. If the pressure was lowered to 75 mmHg, the amplitude of the PPG output dropped by 50%. Likewise, pressure in the cuff altered the shape of the PPG waveform (refer to
The change in the shape of the PPG signal consisted of a delayed yet more rapid and drastic systolic growth. These changes reflect the effect of the cuff on the pressure of the blood passing through the observed vessel. This occurs because the magnitude of pressure cause by the cuff is subtracted from the pulse wave pressure in the vessel.
The raising of the aim above the “point of equal blood pressure” (above the level of the heart) makes the use of externally-applied pressure caused by the cuff unnecessary. When the arm is thus raised above the “point of equal blood pressure” to the point of pointing straight up, the position of the arm increases the amplitude of the PPG output. When the arm is lowered to its initial level the PPG output also decreases to its initial level.
The gravitational force is an important factor affecting the transmural pressure. For instance, the transmural pressure in the digital artery of the raised arm is less than the transmural pressure in that same artery when at the level of the heart. The extent to which the transmural pressure changes depends on the density of the blood, the gravitational force acting on the blood, and the distance that is it from the “point of equal blood pressure”.
Ptrh=Ptrho−pgh
Where Ptrh stands for the transmural pressure in the digital artery of the raised hand, Ptrho—the transmural pressure in the digital artery at the level of the heart, p—the density of blood (1.03 g/cm), g—gravitational force (980 cm/sec.), h—distance from the point of equal blood pressure to the digital artery in the upraised arm (90 cm.). With the given distance from the “point of equal blood pressure” the blood pressure of the person standing with the upraised arm is 66 mmHg lower than the average blood pressure in the digital artery, measured at the level of the heart.
In this manner the transmural pressure can be lowered either by increasing the pressure from exterior or by lowering the pressure in the vessel itself. It is relatively simple to lower the pressure in the digital artery: one has to raise the hand above the level of the heart. By gradually raising the arm we lower the transmural pressure in the digital artery. At the same time the amplitude of the PPG output increases significantly. The average pressure in the upraised arm can drop down to 30 mmHg, whereas when the hand is on the level of the heart, the pressure reads at 90 mmHg. Transmural pressure in the region of the knee can be four times as large as the transmural pressure in the arteries of the raised arm. The effect of the hydrostatic pressure on the magnitude of the transmural pressure can be used when assessing the visco-elastic qualities of the artery wall.
The aforementioned inventions have the following advantages:
1. The pressure for the occlusion test is determined individually for each patient.
2. Information about the visco-elastic attributes of the arterial channel is provided (depending on the amplitude of the PG output derived from blood pressure increase).
3. Provide a clearer relationship between output and noise/static.
4. The occlusion test is done in a more a more optimal region of the compliancy of the vessel.
5. The inventions provide information about the rheological characteristics of the artery by taking and recording sets of PPG waveforms during various transmural pressures.
6. The inventions increase the sensitivity of the test, thereby increasing the reliability of endothelial tissue function assessment.
7. Allow detection of a pathology at the earliest stages of disrupted endothelial function.
8. Allow to reliably assess the effectiveness of prescribed pharmaceutical therapies.
Number | Date | Country | Kind |
---|---|---|---|
2006105107 | Feb 2006 | RU | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/RU2006/000158 | 4/3/2006 | WO | 00 | 8/10/2010 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2007/097654 | 8/30/2007 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3807389 | Miller et al. | Apr 1974 | A |
3903872 | Link | Sep 1975 | A |
3980075 | Heule | Sep 1976 | A |
4009709 | Link et al. | Mar 1977 | A |
4074711 | Link et al. | Feb 1978 | A |
4163447 | Orr | Aug 1979 | A |
4195643 | Pratt, Jr. | Apr 1980 | A |
4406289 | Wesseling et al. | Sep 1983 | A |
4432374 | Osanai | Feb 1984 | A |
4510940 | Wesseling | Apr 1985 | A |
4539997 | Wesseling et al. | Sep 1985 | A |
4562843 | Djordjevich et al. | Jan 1986 | A |
4566463 | Taniguchi et al. | Jan 1986 | A |
4646754 | Seale | Mar 1987 | A |
4669485 | Russell | Jun 1987 | A |
4677983 | Yamaguchi et al. | Jul 1987 | A |
4718426 | Russell | Jan 1988 | A |
4718427 | Russell | Jan 1988 | A |
4718428 | Russell | Jan 1988 | A |
4771792 | Seale | Sep 1988 | A |
4798211 | Goor et al. | Jan 1989 | A |
4821735 | Goor et al. | Apr 1989 | A |
4846189 | Sun | Jul 1989 | A |
4850371 | Broadhurst et al. | Jul 1989 | A |
4880013 | Chio | Nov 1989 | A |
4966141 | Bacaner et al. | Oct 1990 | A |
4979110 | Albrecht et al. | Dec 1990 | A |
4986277 | Sackner | Jan 1991 | A |
4993422 | Hon et al. | Feb 1991 | A |
5025792 | Hon et al. | Jun 1991 | A |
5040540 | Sackner | Aug 1991 | A |
5043576 | Broadhurst et al. | Aug 1991 | A |
5048533 | Muz | Sep 1991 | A |
5054494 | Lazzaro et al. | Oct 1991 | A |
5099852 | Meister et al. | Mar 1992 | A |
5119824 | Niwa | Jun 1992 | A |
5127408 | Parsons et al. | Jul 1992 | A |
5140990 | Jones et al. | Aug 1992 | A |
5152297 | Meister et al. | Oct 1992 | A |
5161531 | Parsons et al. | Nov 1992 | A |
5162991 | Chio | Nov 1992 | A |
5241963 | Shankar | Sep 1993 | A |
5241964 | McQuilkin | Sep 1993 | A |
5269310 | Jones et al. | Dec 1993 | A |
5271399 | Listerud et al. | Dec 1993 | A |
5297556 | Shankar | Mar 1994 | A |
5303711 | Sciarra | Apr 1994 | A |
5343867 | Shankar | Sep 1994 | A |
5379774 | Nishimura et al. | Jan 1995 | A |
5423322 | Clark et al. | Jun 1995 | A |
5447163 | Apple | Sep 1995 | A |
5485838 | Ukawa et al. | Jan 1996 | A |
5511546 | Hon | Apr 1996 | A |
5533511 | Kaspari et al. | Jul 1996 | A |
5685989 | Krivitski et al. | Nov 1997 | A |
5758652 | Nikolic | Jun 1998 | A |
5810734 | Caro et al. | Sep 1998 | A |
5830131 | Caro et al. | Nov 1998 | A |
5833602 | Osemwota | Nov 1998 | A |
5876347 | Chesney et al. | Mar 1999 | A |
5906581 | Tsuda | May 1999 | A |
5935066 | Harris | Aug 1999 | A |
5961467 | Shimazu et al. | Oct 1999 | A |
5980464 | Tsuda | Nov 1999 | A |
6010457 | O'Rourke | Jan 2000 | A |
6015393 | Hovland et al. | Jan 2000 | A |
6027452 | Flaherty et al. | Feb 2000 | A |
6045509 | Caro et al. | Apr 2000 | A |
6048318 | Chesney et al. | Apr 2000 | A |
6088607 | Diab et al. | Jul 2000 | A |
6120459 | Nitzan | Sep 2000 | A |
6152881 | Raines et al. | Nov 2000 | A |
6162181 | Hynson et al. | Dec 2000 | A |
6171242 | Amano et al. | Jan 2001 | B1 |
6210591 | Krivitski | Apr 2001 | B1 |
6241680 | Miwa | Jun 2001 | B1 |
6290651 | Chesney et al. | Sep 2001 | B1 |
6309359 | Whitt et al. | Oct 2001 | B1 |
6319205 | Goor et al. | Nov 2001 | B1 |
6322515 | Goor | Nov 2001 | B1 |
6331159 | Amano et al. | Dec 2001 | B1 |
6331161 | Chesney et al. | Dec 2001 | B1 |
6338719 | Drzewiecki et al. | Jan 2002 | B1 |
6440080 | Booth et al. | Aug 2002 | B1 |
6445945 | Arsenault | Sep 2002 | B1 |
6461305 | Schnall | Oct 2002 | B1 |
6482163 | Oka et al. | Nov 2002 | B2 |
6488633 | Schnall | Dec 2002 | B1 |
6488663 | Steg | Dec 2002 | B1 |
6491647 | Bridger et al. | Dec 2002 | B1 |
6517495 | Hersh | Feb 2003 | B1 |
6554774 | Miele | Apr 2003 | B1 |
6585659 | Chesney et al. | Jul 2003 | B1 |
6592528 | Amano | Jul 2003 | B2 |
6616613 | Goodman | Sep 2003 | B1 |
6623431 | Sakuma et al. | Sep 2003 | B1 |
6623434 | Chesney et al. | Sep 2003 | B2 |
6626840 | Drzewiecki et al. | Sep 2003 | B2 |
6662130 | Peel, III et al. | Sep 2003 | B1 |
6629343 | Chesney et al. | Oct 2003 | B1 |
6632181 | Flaherty et al. | Oct 2003 | B2 |
6654628 | Silber et al. | Nov 2003 | B1 |
6719704 | Narimatsu et al. | Apr 2004 | B2 |
6733461 | Bratteli | May 2004 | B2 |
6746407 | Steuer et al. | Jun 2004 | B2 |
6749567 | Davis et al. | Jun 2004 | B2 |
6757554 | Rubinstein et al. | Jun 2004 | B2 |
6804543 | Miller et al. | Oct 2004 | B2 |
6868739 | Krivitski et al. | Mar 2005 | B1 |
6884221 | Narimatsu et al. | Apr 2005 | B2 |
6896660 | Jelliffe et al. | May 2005 | B2 |
6905470 | Lee et al. | Jun 2005 | B2 |
6908436 | Chowienczyk | Jun 2005 | B2 |
6915154 | Docherty et al. | Jul 2005 | B1 |
6916289 | Schnall | Jul 2005 | B2 |
6937882 | Steuer et al. | Aug 2005 | B2 |
6939304 | Schnall et al. | Sep 2005 | B2 |
6939305 | Flaherty et al. | Sep 2005 | B2 |
6976966 | Narimatsu | Dec 2005 | B2 |
6987993 | Steuer et al. | Jan 2006 | B2 |
6994675 | Sharrock | Feb 2006 | B2 |
7022084 | Ogura | Apr 2006 | B2 |
7024234 | Margulies et al. | Apr 2006 | B2 |
7041060 | Flaherty et al. | May 2006 | B2 |
7048691 | Miele et al. | May 2006 | B2 |
7056291 | Yokozeki et al. | Jun 2006 | B2 |
7070569 | Heinonen et al. | Jul 2006 | B2 |
7074183 | Castellanos | Jul 2006 | B2 |
7077809 | Wu et al. | Jul 2006 | B2 |
7121150 | Krivitski et al. | Oct 2006 | B2 |
7131949 | Hayano et al. | Nov 2006 | B2 |
7204798 | Zdeblick et al. | Apr 2007 | B2 |
7214192 | Poliac et al. | May 2007 | B2 |
7244225 | Loeb et al. | Jul 2007 | B2 |
7250031 | Hayano et al. | Jul 2007 | B2 |
7264594 | Shimazu et al. | Sep 2007 | B2 |
7291112 | Martin et al. | Nov 2007 | B2 |
7291113 | Satoh et al. | Nov 2007 | B2 |
7297280 | Krivitski et al. | Nov 2007 | B2 |
7318804 | Weitzel et al. | Jan 2008 | B2 |
7374541 | Amitzur et al. | May 2008 | B2 |
7621877 | Schnall | Nov 2009 | B2 |
7806831 | Lavie et al. | Oct 2010 | B2 |
20010025151 | Kimball et al. | Sep 2001 | A1 |
20020013533 | Oka et al. | Jan 2002 | A1 |
20020062086 | Miele et al. | May 2002 | A1 |
20020065471 | Amano et al. | May 2002 | A1 |
20020072681 | Schnali | Jun 2002 | A1 |
20020111554 | Drzewiecki et al. | Aug 2002 | A1 |
20020183599 | Castellanos | Dec 2002 | A1 |
20030004423 | Lavie et al. | Jan 2003 | A1 |
20030032885 | Rubinstein et al. | Feb 2003 | A1 |
20030036685 | Goodman | Feb 2003 | A1 |
20030040675 | Sharrock | Feb 2003 | A1 |
20030060690 | Jelliffe et al. | Mar 2003 | A1 |
20030065270 | Raines et al. | Apr 2003 | A1 |
20030069507 | Nishibayashi | Apr 2003 | A1 |
20030191395 | Bowman et al. | Oct 2003 | A1 |
20030212336 | Lee et al. | Nov 2003 | A1 |
20030216652 | Narimatsu et al. | Nov 2003 | A1 |
20030229288 | Chowienczyk et al. | Dec 2003 | A1 |
20030236464 | Narimatsu et al. | Dec 2003 | A1 |
20040064057 | Siegel | Apr 2004 | A1 |
20040092832 | Schnall et al. | May 2004 | A1 |
20040116787 | Schnall | Jun 2004 | A1 |
20040127800 | Kimball et al. | Jul 2004 | A1 |
20040167413 | Bratteli | Aug 2004 | A1 |
20040215085 | Schnall | Oct 2004 | A1 |
20040215093 | Rubenstein et al. | Oct 2004 | A1 |
20040230125 | Amano et al. | Nov 2004 | A1 |
20040254483 | Zdeblick et al. | Dec 2004 | A1 |
20040254485 | Wu et al. | Dec 2004 | A1 |
20040267141 | Amano et al. | Dec 2004 | A1 |
20050004476 | Payvar et al. | Jan 2005 | A1 |
20050010928 | Arsenault | Jan 2005 | A1 |
20050020891 | Rubinstein et al. | Jan 2005 | A1 |
20050038346 | Miele | Feb 2005 | A1 |
20050043608 | Haj-Yousef | Feb 2005 | A1 |
20050070805 | Dafni | Mar 2005 | A1 |
20050075531 | Loeb et al. | Apr 2005 | A1 |
20050085712 | Rapoport | Apr 2005 | A1 |
20050107710 | Nakayama | May 2005 | A1 |
20050113652 | Stark et al. | May 2005 | A1 |
20050143633 | Jelliffe et al. | Jun 2005 | A1 |
20050171443 | Gorenberg et al. | Aug 2005 | A1 |
20050182434 | Docherty et al. | Aug 2005 | A1 |
20050228303 | Hayano et al. | Oct 2005 | A1 |
20050256412 | Shimazu | Nov 2005 | A1 |
20050267381 | Benditt et al. | Dec 2005 | A1 |
20060009688 | Lamego | Jan 2006 | A1 |
20060009700 | Brumfield et al. | Jan 2006 | A1 |
20060015032 | Gordon | Jan 2006 | A1 |
20060052713 | Poliac et al. | Mar 2006 | A1 |
20060052714 | Poliac et al. | Mar 2006 | A1 |
20060064024 | Schnall | Mar 2006 | A1 |
20060079791 | Letremy et al. | Apr 2006 | A1 |
20060104824 | Schnall | May 2006 | A1 |
20060122489 | Kato et al. | Jun 2006 | A1 |
20060149152 | Amitzur et al. | Jul 2006 | A1 |
20060178585 | Sharrock | Aug 2006 | A1 |
20060206030 | Flaherty et al. | Sep 2006 | A1 |
20060206032 | Miele et al. | Sep 2006 | A1 |
20060217614 | Takala et al. | Sep 2006 | A1 |
20060217615 | Huiku et al. | Sep 2006 | A1 |
20060229488 | Ayre et al. | Oct 2006 | A1 |
20060229506 | Castellanos | Oct 2006 | A1 |
20060229519 | Fujiwara et al. | Oct 2006 | A1 |
20060241459 | Tai | Oct 2006 | A1 |
20060247538 | Davis | Nov 2006 | A1 |
20060258946 | Hayano et al. | Nov 2006 | A1 |
20060264755 | Maltz et al. | Nov 2006 | A1 |
20060287600 | McEowen | Dec 2006 | A1 |
20070021673 | Arbel et al. | Jan 2007 | A1 |
20070021683 | Benditt et al. | Jan 2007 | A1 |
20070055163 | Asada et al. | Mar 2007 | A1 |
20070078351 | Fujita et al. | Apr 2007 | A1 |
20070106162 | Illyes et al. | May 2007 | A1 |
20070118045 | Naghavi et al. | May 2007 | A1 |
20070161914 | Zdeblick et al. | Jul 2007 | A1 |
20070173727 | Naghavi et al. | Jul 2007 | A1 |
20070225606 | Naghavi et al. | Sep 2007 | A1 |
20070270720 | Fry | Nov 2007 | A1 |
20080004511 | Rubenstein et al. | Jan 2008 | A1 |
20080013777 | Park | Jan 2008 | A1 |
20080015434 | Rubenstein et al. | Jan 2008 | A1 |
20080027298 | Blanco et al. | Jan 2008 | A1 |
20080027330 | Naghavi et al. | Jan 2008 | A1 |
20080033307 | Baudoin et al. | Feb 2008 | A1 |
20080039731 | McCombie et al. | Feb 2008 | A1 |
20080077024 | Schnall | Mar 2008 | A1 |
20080139949 | Caldarone et al. | Jun 2008 | A1 |
Number | Date | Country |
---|---|---|
102004016376 | Oct 2005 | DE |
0197302 | Oct 1986 | EP |
0244264 | Nov 1987 | EP |
0262778 | Apr 1988 | EP |
0347101 | Dec 1989 | EP |
0443267 | Aug 1991 | EP |
0694283 | Jan 1996 | EP |
0716829 | Jun 1996 | EP |
0818175 | Jan 1998 | EP |
0997102 | May 2000 | EP |
1175864 | Jan 2002 | EP |
1360929 | Nov 2003 | EP |
1362549 | Nov 2003 | EP |
1374760 | Jan 2004 | EP |
1584289 | Oct 2005 | EP |
1618840 | Jan 2006 | EP |
1704818 | Sep 2006 | EP |
1743572 | Jan 2007 | EP |
1769748 | Apr 2007 | EP |
1849408 | Oct 2007 | EP |
1852061 | Nov 2007 | EP |
1852063 | Nov 2007 | EP |
120109 | Dec 2002 | IL |
120881 | Dec 2002 | IL |
151437 | Sep 2007 | IL |
154833 | Sep 2007 | IL |
5305061 | Nov 1993 | JP |
2938237 | Jun 1996 | JP |
9173307 | Jul 1997 | JP |
2004129979 | Apr 2004 | JP |
2006102252 | Apr 2006 | JP |
2006115979 | May 2006 | JP |
2006181261 | Jul 2006 | JP |
2220653 | Jan 2004 | RU |
2265391 | Jul 2005 | RU |
2004102316 | Jul 2005 | RU |
2302196 | Jul 2007 | RU |
8604801 | Aug 1986 | WO |
8909017 | Oct 1989 | WO |
9001895 | Mar 1990 | WO |
9002512 | Mar 1992 | WO |
9207508 | May 1992 | WO |
9222239 | Dec 1992 | WO |
9305704 | Apr 1993 | WO |
9518564 | Jul 1995 | WO |
9709927 | Mar 1997 | WO |
9712545 | Apr 1997 | WO |
9714356 | Apr 1997 | WO |
9749328 | Dec 1997 | WO |
9804182 | Feb 1998 | WO |
9842255 | Oct 1998 | WO |
9934724 | Jul 1999 | WO |
9939634 | Aug 1999 | WO |
9963884 | Dec 1999 | WO |
0017615 | Mar 2000 | WO |
0032103 | Jun 2000 | WO |
0057776 | Oct 2000 | WO |
0059372 | Oct 2000 | WO |
0074551 | Dec 2000 | WO |
0074563 | Dec 2000 | WO |
0122870 | Apr 2001 | WO |
0164101 | Sep 2001 | WO |
0170303 | Sep 2001 | WO |
0195798 | Dec 2001 | WO |
2002000107 | Jan 2002 | WO |
2002005726 | Jan 2002 | WO |
2002034105 | May 2002 | WO |
WO 0234105 | May 2002 | WO |
02085204 | Oct 2002 | WO |
2002080752 | Oct 2002 | WO |
2002089668 | Nov 2002 | WO |
2002094085 | Nov 2002 | WO |
2002099600 | Dec 2002 | WO |
2003051193 | Jun 2003 | WO |
2003086169 | Oct 2003 | WO |
WO 2003086169 | Oct 2003 | WO |
2004006748 | Jan 2004 | WO |
2004021878 | Mar 2004 | WO |
2004041079 | May 2004 | WO |
2004052196 | Jun 2004 | WO |
2004066817 | Aug 2004 | WO |
2005006975 | Jan 2005 | WO |
2005028029 | Mar 2005 | WO |
2005030038 | Apr 2005 | WO |
2005092178 | Oct 2005 | WO |
2005110051 | Nov 2005 | WO |
2006024871 | Mar 2006 | WO |
2006034542 | Jun 2006 | WO |
2006102511 | Sep 2006 | WO |
2007024777 | Mar 2007 | WO |
2009144598 | Dec 2009 | WO |
2009144721 | Dec 2009 | WO |
2010089745 | Aug 2010 | WO |
Entry |
---|
International Search Report and Written Opinion dated Jul. 6, 2010 regarding PCT/US2010/033907 with a filing date on May 6, 2010. |
Tsui, et al., Arterial pulse waveform analysis by the probability distribution of amplitude, 2007, vol. 28, No. 8, Physiological Measurement—attached as reference to International Search Report and Written Opinion dated Jul. 6, 2010 regarding PCT/US2010/033907. |
Semkin, ND, Diagnosis of vascular endothelial function in patients with cardiovascular disease Methodological guidelines, 2004, 17 pp., Samara State Aerospace University. |
Supplementary Search Report of EP Application No. 06784054.6, dated Aug. 8, 2009, 6 pages total. |
International Preliminary Report on Patentability of PCT Application No. PCT/RU2006/000158, dated Dec. 10, 2008, 8 pages total. |
Number | Date | Country | |
---|---|---|---|
20100298717 A1 | Nov 2010 | US |