Object detection is required in various systems and applications.
There is a growing need to provide a method and a system that may be able to provide highly accurate object detection at a low cost.
There may be provided an object detection system that may include a trained student object detection neural network (ODNN) that was trained to mimic a teacher ODNN; wherein the training may include calculating a teacher student detection loss that may be based on a pre-bounding-box output of the teacher ODNN; wherein the pre-bounding-box output of the teacher ODNN may be a function of pre-bounding-box outputs of different ODNNs that belong to the teacher ODNN; wherein the trained student ODNN may be configured to receive an image and output a student pre-bounding-box output that may be indicative of one or more objects in the image; and a bounding box unit that may be configured to receive the student pre-bounding-box output and to calculate one or more bounding boxes based on the student pre-bounding-box output.
There may be provided a non-transitory computer readable medium that may store instructions for: training a student object detection neural network (ODNN) to mimic a teacher ODNN; wherein the training may include calculating a teacher student detection loss that may be based on a pre-bounding-box output of the teacher ODNN; wherein the pre-bounding-box output of the teacher ODNN may be a function of pre-bounding-box outputs of different ODNNs that belong to the teacher ODNN; and detecting one or more objects in an image; wherein the detecting may include: feeding the image to the trained student ODNN; outputting by the trained student ODNN a student pre-bounding-box output; and calculating one or more bounding boxes based on the student pre-bounding-box output.
There may be provided method for object detection, the method may include training a student object detection neural network (ODNN) to mimic a teacher ODNN; wherein the training may include calculating a teacher student detection loss that may be based on a pre-bounding-box output of the teacher ODNN; wherein the pre-bounding-box output of the teacher ODNN may be a function of pre-bounding-box outputs of different ODNNs that belong to the teacher ODNN; and detecting one or more objects in an image; wherein the detecting may include: feeding the image to the trained student ODNN; outputting by the trained student ODNN a student pre-bounding-box output; and calculating one or more bounding boxes based on the student pre-bounding-box output.
The pre-bounding-box outputs of the teacher ODNN may be a weighted sum of the pre-bounding-box output of the different ODNNs; and wherein the method may include calculating, by the teacher ODNN, weights to be applied during a calculation of the weighted sum.
The method wherein each one of the pre-bounding-box outputs of the different ODNNs may include an objectiveness confidence level indicative of an existence of an object; and wherein the calculating of the weights may include applying a function on objectiveness confidence level of the pre-bounding-box outputs of the different ODNNs.
The function may be a softmax function.
The function may be a max function.
The function may be a sigmoid function.
The calculating of the weights may include training a weight learning neural network of the teacher ODNN.
The calculating of the weight may be done per anchor out of a set of anchors.
The method may include calculating the weighted sum of the pre-bounding-box outputs of the different ODNNs by applying different weights to different parts of the pre-bounding-box outputs of the different ODNNs.
The embodiments of the disclosure will be understood and appreciated more fully from the following detailed description, taken in conjunction with the drawings in which:
In the following detailed description, numerous specific details are set forth in order to provide a thorough understanding of the invention. However, it will be understood by those skilled in the art that the present invention may be practiced without these specific details. In other instances, well-known methods, procedures, and components have not been described in detail so as not to obscure the present invention.
The subject matter regarded as the invention is particularly pointed out and distinctly claimed in the concluding portion of the specification. The invention, however, both as to organization and method of operation, together with objects, features, and advantages thereof, may best be understood by reference to the following detailed description when read with the accompanying drawings.
It will be appreciated that for simplicity and clarity of illustration, elements shown in the figures have not necessarily been drawn to scale. For example, the dimensions of some of the elements may be exaggerated relative to other elements for clarity. Further, where considered appropriate, reference numerals may be repeated among the figures to indicate corresponding or analogous elements.
Because the illustrated embodiments of the present invention may for the most part, be implemented using electronic components and circuits known to those skilled in the art, details will not be explained in any greater extent than that considered necessary as illustrated above, for the understanding and appreciation of the underlying concepts of the present invention and in order not to obfuscate or distract from the teachings of the present invention.
Any reference in the specification to a method should be applied mutatis mutandis to a device or system capable of executing the method and/or to a non-transitory computer readable medium that stores instructions for executing the method.
Any reference in the specification to a system or device should be applied mutatis mutandis to a method that may be executed by the system, and/or may be applied mutatis mutandis to non-transitory computer readable medium that stores instructions executable by the system.
Any reference in the specification to a non-transitory computer readable medium should be applied mutatis mutandis to a device or system capable of executing instructions stored in the non-transitory computer readable medium and/or may be applied mutatis mutandis to a method for executing the instructions.
Any combination of any module or unit listed in any of the figures, any part of the specification and/or any claims may be provided.
There may be provided a highly efficient system and method for object detection.
The highly efficient system benefits from the benefits of both knowledge distillation and from ensemble.
Regarding ensemble—a teacher object detection neural network (ODNN) includes multiple ODNNs that differ from each other (represent different models) and generates a teacher ODNN that benefits from the contribution of the multiple ODNNs. This improves the performance of the teaches ODNN.
In order to enjoy the benefits of the ensemble, the outputs of the ODNNs should be raw or preliminary outputs—and not bounding boxes. There raw or preliminary outputs are also referred to as pre-bounding-box outputs.
The knowledge embedded in the teacher ODNN is distilled to a student ODNN that is much smaller (for example by a factor of at least 5, 10, 50, 100 and the like) to provide a a student ODNN that mimics the teacher ODNN—but at a fraction of cost/size/and power consumption of the teacher ODNN.
In order to benefit from the ensambling
In the following figures the teacher ODNN includes three ODNNs—whereas the number of ODNNs of the teacher ODNN may be two or above four.
Method 7300 is for object detection.
Method 7300 may include steps 7310 and 7330.
Step 7310 may include training a student object detection neural network (ODNN) to mimic a teacher ODNN. The training may include calculating a teacher student detection loss that is based on a pre-bounding-box output of the teacher ODNN. The pre-bounding-box output of the teacher ODNN is a function of pre-bounding-box outputs of different ODNNs that belong to the teacher ODNN.
The pre-bounding-box outputs of the teacher ODNN is a weighted sum of the pre-bounding-box output of the different ODNNs.
Step 7310 may include step 7312 of calculating, by the teacher ODNN, weights to be applied during a calculation of the weighted sum.
Each one of the pre-bounding-box outputs of the different ODNNs may include an objectiveness confidence level indicative of an existence of an object.
Step 7312 may include applying a function on objectiveness confidence level of the pre-bounding-box outputs of the different ODNNs.
The function may be, for example, a softmax function, a max function, a sigmoid function, and the like.
Step 7312 may include training a weight learning neural network of the teacher ODNN. The training is aimed to determine the weights of the weighted sum.
The calculating of the weight can be done per anchor, per multiple anchors or per all anchors of a set of anchors. The set of anchors is usually a parameter of the object detection method.
The weighted sum may be applied on all outputs of the ODNNs—but may also include applying different weights to different parts of the pre-bounding-box outputs of the different ODNNs.
Step 7310 may be followed by step 7330 of detecting one or more objects in an image.
Step 7330 may include a sequence of steps that includes steps 7332, 7334 and 7336.
Step 7332 may include feeding the image to the trained student ODNN.
Step 7334 may include outputting by the trained student ODNN a student pre-bounding-box output.
Step 7336 may include calculating one or more bounding boxes based on the student pre-bounding-box output.
Step 7310 may include, for example, segmenting an image to regions, and within each region trying to find bonding boxes (of a set of bounding boxes) and the probabilities related to the inclusion of an object within the bounding boxes. Step 7310 may apply object detection algorithms such as but not limited to any one of the Yolo family (for example, —YOLO, YOLO2, YOLO3, and the like).
The teacher ODNN 700 includes three ODNNs (first ODNN 7011, second ODNN 7012, and third ODNN 7013) that differ from each other (represent different models).
The three ODNNs are fed, during the teaches ODNN learning process with first training images TI17005 and output first, second and third ODNN output vectors OV17021, OV27022 and OV27033 respectively. These three output vectors are pre-bounding box output vectors.
These three output vectors are sent to a weighted sum unit 7040 that calculates a weighted sum of the three output vectors. The weights used in the calculation of the weighted sum are calculated by a weight learning neural network 7030.
The weighted sum is the output vector (TOV 7042) of the teacher ODNN. During the learning process, output vector TOV 7042 and the expected outcome 7052 (the supervised learning process knows which objects appear in TI17005) are fed to a teacher object detection loss unit 7050 that calculates the errors/object detection loss and feeds the error to the weight learning neural network 7030—in order to allow the weight learning neural network 7030 to adjust itself and provide better weights.
It should be noted that the weight learning neural network 7030 may receive the entire first, second and third ODNN output vectors, or only parts of the first, second and third ODNN output vectors. For example—weight may be learnt per anchor, per two or more anchors, and the like.
It should be noted that the calculating of the weighted sum may include applying the weights to the entire first, second and third ODNN output vectors but that different weights may applied to different parts of the first, second and third ODNN output vectors. For example—different fields of the first, second and third ODNN output vectors may be added using different weights.
The knowledge distillation process may include feeding second training images TI27007 to the teacher ODNN and to the student ODNN 7090 in order to train the student ODNN to mimic the teacher ODNN.
The knowledge distillation process is a supervised training process and the student ODNN 7090 is fed by a teacher student object detection loss (from a teacher student OD loss unit 7080)—that reflects the difference between the outputs of the student and the teacher.
The student ODNN 7090 is also fed by its own object detection loss (difference from expected outcome 7054) calculated by student OD loss unit 7091.
Third images I37009 that should undergo an object detection process are fed to a student ODNN 7090 (after the student ODNN was trained) that outputs a pre-bounding-box output SOV 7092 that is fed to a bounding box unit 7110 for calculating of bounding boxes.
While the foregoing written description of the invention enables one of ordinary skill to make and use what is considered presently to be the best mode thereof, those of ordinary skill will understand and appreciate the existence of variations, combinations, and equivalents of the specific embodiment, method, and examples herein. The invention should therefore not be limited by the above described embodiment, method, and examples, but by all embodiments and methods within the scope and spirit of the invention as claimed.
In the foregoing specification, the invention has been described with reference to specific examples of embodiments of the invention. It will, however, be evident that various modifications and changes may be made therein without departing from the broader spirit and scope of the invention as set forth in the appended claims.
Moreover, the terms “front,” “back,” “top,” “bottom,” “over,” “under” and the like in the description and in the claims, if any, are used for descriptive purposes and not necessarily for describing permanent relative positions. It is understood that the terms so used are interchangeable under appropriate circumstances such that the embodiments of the invention described herein are, for example, capable of operation in other orientations than those illustrated or otherwise described herein.
Furthermore, the terms “assert” or “set” and “negate” (or “deassert” or “clear”) are used herein when referring to the rendering of a signal, status bit, or similar apparatus into its logically true or logically false state, respectively. If the logically true state is a logic level one, the logically false state is a logic level zero. And if the logically true state is a logic level zero, the logically false state is a logic level one.
Those skilled in the art will recognize that the boundaries between logic blocks are merely illustrative and that alternative embodiments may merge logic blocks or circuit elements or impose an alternate decomposition of functionality upon various logic blocks or circuit elements. Thus, it is to be understood that the architectures depicted herein are merely exemplary, and that in fact many other architectures may be implemented which achieve the same functionality.
Any arrangement of components to achieve the same functionality is effectively “associated” such that the desired functionality is achieved. Hence, any two components herein combined to achieve a particular functionality may be seen as “associated with” each other such that the desired functionality is achieved, irrespective of architectures or intermedial components. Likewise, any two components so associated can also be viewed as being “operably connected,” or “operably coupled,” to each other to achieve the desired functionality.
Furthermore, those skilled in the art will recognize that boundaries between the above described operations merely illustrative. The multiple operations may be combined into a single operation, a single operation may be distributed in additional operations and operations may be executed at least partially overlapping in time. Moreover, alternative embodiments may include multiple instances of a particular operation, and the order of operations may be altered in various other embodiments.
Also for example, in one embodiment, the illustrated examples may be implemented as circuitry located on a single integrated circuit or within a same device. Alternatively, the examples may be implemented as any number of separate integrated circuits or separate devices interconnected with each other in a suitable manner.
However, other modifications, variations and alternatives are also possible. The specifications and drawings are, accordingly, to be regarded in an illustrative rather than in a restrictive sense.
In the claims, any reference signs placed between parentheses shall not be construed as limiting the claim. The word ‘comprising’ does not exclude the presence of other elements or steps then those listed in a claim. Furthermore, the terms “a” or “an,” as used herein, are defined as one or more than one. Also, the use of introductory phrases such as “at least one” and “one or more” in the claims should not be construed to imply that the introduction of another claim element by the indefinite articles “a” or “an” limits any particular claim containing such introduced claim element to inventions containing only one such element, even when the same claim includes the introductory phrases “one or more” or “at least one” and indefinite articles such as “a” or “an.” The same holds true for the use of definite articles. Unless stated otherwise, terms such as “first” and “second” are used to arbitrarily distinguish between the elements such terms describe. Thus, these terms are not necessarily intended to indicate temporal or other prioritization of such elements. The mere fact that certain measures are recited in mutually different claims does not indicate that a combination of these measures cannot be used to advantage.
While certain features of the invention have been illustrated and described herein, many modifications, substitutions, changes, and equivalents will now occur to those of ordinary skill in the art. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the true spirit of the invention.
It is appreciated that various features of the embodiments of the disclosure which are, for clarity, described in the contexts of separate embodiments may also be provided in combination in a single embodiment. Conversely, various features of the embodiments of the disclosure which are, for brevity, described in the context of a single embodiment may also be provided separately or in any suitable sub-combination.
It will be appreciated by persons skilled in the art that the embodiments of the disclosure are not limited by what has been particularly shown and described hereinabove. Rather the scope of the embodiments of the disclosure is defined by the appended claims and equivalents thereof.
This application claims priority from U.S. provisional patent Ser. No. 62/817,766, filing date Mar. 13, 2019.
Number | Name | Date | Kind |
---|---|---|---|
4733353 | Jaswa | Mar 1988 | A |
4932645 | Schorey et al. | Jun 1990 | A |
4972363 | Nguyen et al. | Nov 1990 | A |
5078501 | Hekker et al. | Jan 1992 | A |
5214746 | Fogel et al. | May 1993 | A |
5307451 | Clark | Apr 1994 | A |
5412564 | Ecer | May 1995 | A |
5436653 | Ellis et al. | Jul 1995 | A |
5568181 | Greenwood et al. | Oct 1996 | A |
5638425 | Meador et al. | Jun 1997 | A |
5745678 | Herzberg et al. | Apr 1998 | A |
5754938 | Herz et al. | May 1998 | A |
5763069 | Jordan | Jun 1998 | A |
5806061 | Chaudhuri et al. | Sep 1998 | A |
5835087 | Herz et al. | Nov 1998 | A |
5835901 | Duvoisin et al. | Nov 1998 | A |
5852435 | Vigneaux et al. | Dec 1998 | A |
5870754 | Dimitrova et al. | Feb 1999 | A |
5873080 | Coden et al. | Feb 1999 | A |
5887193 | Takahashi et al. | Mar 1999 | A |
5926812 | Hilsenrath et al. | Jul 1999 | A |
5978754 | Kumano | Nov 1999 | A |
5991306 | Burns et al. | Nov 1999 | A |
6052481 | Grajski et al. | Apr 2000 | A |
6070167 | Qian et al. | May 2000 | A |
6076088 | Paik et al. | Jun 2000 | A |
6122628 | Castelli et al. | Sep 2000 | A |
6128651 | Cezar | Oct 2000 | A |
6137911 | Zhilyaev | Oct 2000 | A |
6144767 | Bottou et al. | Nov 2000 | A |
6147636 | Gershenson | Nov 2000 | A |
6163510 | Lee et al. | Dec 2000 | A |
6243375 | Speicher | Jun 2001 | B1 |
6243713 | Nelson et al. | Jun 2001 | B1 |
6275599 | Adler et al. | Aug 2001 | B1 |
6314419 | Faisal | Nov 2001 | B1 |
6329986 | Cheng | Dec 2001 | B1 |
6381656 | Shankman | Apr 2002 | B1 |
6411229 | Kobayashi | Jun 2002 | B2 |
6422617 | Fukumoto et al. | Jul 2002 | B1 |
6507672 | Watkins et al. | Jan 2003 | B1 |
6523046 | Liu et al. | Feb 2003 | B2 |
6524861 | Anderson | Feb 2003 | B1 |
6546405 | Gupta et al. | Apr 2003 | B2 |
6550018 | Abonamah et al. | Apr 2003 | B1 |
6557042 | He et al. | Apr 2003 | B1 |
6594699 | Sahai et al. | Jul 2003 | B1 |
6601026 | Appelt et al. | Jul 2003 | B2 |
6611628 | Sekiguchi et al. | Aug 2003 | B1 |
6618711 | Ananth | Sep 2003 | B1 |
6640015 | Lafruit | Oct 2003 | B1 |
6643620 | Contolini et al. | Nov 2003 | B1 |
6643643 | Lee et al. | Nov 2003 | B1 |
6665657 | Dibachi | Dec 2003 | B1 |
6681032 | Bortolussi et al. | Jan 2004 | B2 |
6704725 | Lee | Mar 2004 | B1 |
6732149 | Kephart | May 2004 | B1 |
6742094 | Igari | May 2004 | B2 |
6751363 | Natsev et al. | Jun 2004 | B1 |
6751613 | Lee et al. | Jun 2004 | B1 |
6754435 | Kim | Jun 2004 | B2 |
6763069 | Divakaran et al. | Jul 2004 | B1 |
6763519 | McColl et al. | Jul 2004 | B1 |
6774917 | Foote et al. | Aug 2004 | B1 |
6795818 | Lee | Sep 2004 | B1 |
6804356 | Krishnamachari | Oct 2004 | B1 |
6813395 | Kinjo | Nov 2004 | B1 |
6819797 | Smith et al. | Nov 2004 | B1 |
6877134 | Fuller et al. | Apr 2005 | B1 |
6901207 | Watkins | May 2005 | B1 |
6938025 | Lulich et al. | Aug 2005 | B1 |
6985172 | Rigney et al. | Jan 2006 | B1 |
7013051 | Sekiguchi et al. | Mar 2006 | B2 |
7020654 | Najmi | Mar 2006 | B1 |
7023979 | Wu et al. | Apr 2006 | B1 |
7043473 | Rassool et al. | May 2006 | B1 |
7158681 | Persiantsev | Jan 2007 | B2 |
7215828 | Luo | May 2007 | B2 |
7260564 | Lynn et al. | Aug 2007 | B1 |
7289643 | Brunk et al. | Oct 2007 | B2 |
7299261 | Oliver et al. | Nov 2007 | B1 |
7302089 | Smits | Nov 2007 | B1 |
7302117 | Sekiguchi et al. | Nov 2007 | B2 |
7313805 | Rosin et al. | Dec 2007 | B1 |
7340358 | Yoneyama | Mar 2008 | B2 |
7346629 | Kapur et al. | Mar 2008 | B2 |
7353224 | Chen et al. | Apr 2008 | B2 |
7376672 | Weare | May 2008 | B2 |
7383179 | Alves et al. | Jun 2008 | B2 |
7433895 | Li et al. | Oct 2008 | B2 |
7464086 | Black et al. | Dec 2008 | B2 |
7529659 | Wold | May 2009 | B2 |
7657100 | Gokturk et al. | Feb 2010 | B2 |
7660468 | Gokturk et al. | Feb 2010 | B2 |
7801893 | Gulli | Sep 2010 | B2 |
7805446 | Potok et al. | Sep 2010 | B2 |
7860895 | Scofield et al. | Dec 2010 | B1 |
7872669 | Darrell et al. | Jan 2011 | B2 |
7921288 | Hildebrand | Apr 2011 | B1 |
7933407 | Keidar et al. | Apr 2011 | B2 |
8023739 | Hohimer et al. | Sep 2011 | B2 |
8266185 | Raichelgauz et al. | Sep 2012 | B2 |
8275764 | Jeon | Sep 2012 | B2 |
8285718 | Ong et al. | Oct 2012 | B1 |
8312031 | Raichelgauz et al. | Nov 2012 | B2 |
8315442 | Gokturk et al. | Nov 2012 | B2 |
8345982 | Gokturk et al. | Jan 2013 | B2 |
8386400 | Raichelgauz et al. | Feb 2013 | B2 |
8396876 | Kennedy et al. | Mar 2013 | B2 |
8418206 | Bryant et al. | Apr 2013 | B2 |
RE44225 | Aviv | May 2013 | E |
8442321 | Chang et al. | May 2013 | B1 |
8457827 | Ferguson et al. | Jun 2013 | B1 |
8495489 | Everingham | Jul 2013 | B1 |
8527978 | Sallam | Sep 2013 | B1 |
8634980 | Urmson | Jan 2014 | B1 |
8635531 | Graham et al. | Jan 2014 | B2 |
8655801 | Raichelgauz et al. | Feb 2014 | B2 |
8655878 | Kulkarni et al. | Feb 2014 | B1 |
8781152 | Momeyer | Jul 2014 | B2 |
8782077 | Rowley | Jul 2014 | B1 |
8799195 | Raichelgauz et al. | Aug 2014 | B2 |
8799196 | Raichelquaz et al. | Aug 2014 | B2 |
8818916 | Raichelgauz et al. | Aug 2014 | B2 |
8868861 | Shimizu et al. | Oct 2014 | B2 |
8886648 | Procopio et al. | Nov 2014 | B1 |
8954887 | Tseng et al. | Feb 2015 | B1 |
8990199 | Ramesh et al. | Mar 2015 | B1 |
9009086 | Raichelgauz et al. | Apr 2015 | B2 |
9104747 | Raichelgauz et al. | Aug 2015 | B2 |
9165406 | Gray et al. | Oct 2015 | B1 |
9298763 | Zack | Mar 2016 | B1 |
9311308 | Sankarasubramaniam et al. | Apr 2016 | B2 |
9323754 | Ramanathan et al. | Apr 2016 | B2 |
9440647 | Sucan | Sep 2016 | B1 |
9466068 | Raichelgauz et al. | Oct 2016 | B2 |
9646006 | Raichelgauz et al. | May 2017 | B2 |
9679062 | Schillings et al. | Jun 2017 | B2 |
9734533 | Givot | Aug 2017 | B1 |
9807442 | Bhatia et al. | Oct 2017 | B2 |
9875445 | Amer et al. | Jan 2018 | B2 |
9984369 | Li et al. | May 2018 | B2 |
10133947 | Yang | Nov 2018 | B2 |
10347122 | Takenaka | Jul 2019 | B2 |
10491885 | Hicks | Nov 2019 | B1 |
10922788 | Yu | Feb 2021 | B1 |
20010019633 | Tenze et al. | Sep 2001 | A1 |
20010034219 | Hewitt et al. | Oct 2001 | A1 |
20010038876 | Anderson | Nov 2001 | A1 |
20020004743 | Kutaragi et al. | Jan 2002 | A1 |
20020010682 | Johnson | Jan 2002 | A1 |
20020010715 | Chinn et al. | Jan 2002 | A1 |
20020019881 | Bokhari et al. | Feb 2002 | A1 |
20020032677 | Morgenthaler et al. | Mar 2002 | A1 |
20020038299 | Zernik et al. | Mar 2002 | A1 |
20020042914 | Walker et al. | Apr 2002 | A1 |
20020072935 | Rowse et al. | Jun 2002 | A1 |
20020087530 | Smith et al. | Jul 2002 | A1 |
20020087828 | Arimilli et al. | Jul 2002 | A1 |
20020091947 | Nakamura | Jul 2002 | A1 |
20020107827 | Benitez-Jimenez et al. | Aug 2002 | A1 |
20020113812 | Walker et al. | Aug 2002 | A1 |
20020126002 | Patchell | Sep 2002 | A1 |
20020126872 | Brunk et al. | Sep 2002 | A1 |
20020129140 | Peled et al. | Sep 2002 | A1 |
20020147637 | Kraft et al. | Oct 2002 | A1 |
20020157116 | Jasinschi | Oct 2002 | A1 |
20020163532 | Thomas et al. | Nov 2002 | A1 |
20020174095 | Lulich et al. | Nov 2002 | A1 |
20020184505 | Mihcak et al. | Dec 2002 | A1 |
20030004966 | Bolle et al. | Jan 2003 | A1 |
20030005432 | Ellis et al. | Jan 2003 | A1 |
20030037010 | Schmelzer | Feb 2003 | A1 |
20030041047 | Chang et al. | Feb 2003 | A1 |
20030089216 | Birmingham et al. | May 2003 | A1 |
20030093790 | Logan et al. | May 2003 | A1 |
20030101150 | Agnihotri et al. | May 2003 | A1 |
20030105739 | Essafi et al. | Jun 2003 | A1 |
20030110236 | Yang et al. | Jun 2003 | A1 |
20030115191 | Copperman et al. | Jun 2003 | A1 |
20030126147 | Essafi et al. | Jul 2003 | A1 |
20030140257 | Peterka et al. | Jul 2003 | A1 |
20030165269 | Fedorovskaya et al. | Sep 2003 | A1 |
20030174859 | Kim | Sep 2003 | A1 |
20030184598 | Graham | Oct 2003 | A1 |
20030200217 | Ackerman | Oct 2003 | A1 |
20030217335 | Chung et al. | Nov 2003 | A1 |
20030229531 | Heckerman et al. | Dec 2003 | A1 |
20040059736 | Willse | Mar 2004 | A1 |
20040091111 | Levy | May 2004 | A1 |
20040095376 | Graham et al. | May 2004 | A1 |
20040098671 | Graham et al. | May 2004 | A1 |
20040111432 | Adams et al. | Jun 2004 | A1 |
20040117638 | Monroe | Jun 2004 | A1 |
20040128511 | Sun et al. | Jul 2004 | A1 |
20040153426 | Nugent | Aug 2004 | A1 |
20040162820 | James et al. | Aug 2004 | A1 |
20040230572 | Omoigui | Nov 2004 | A1 |
20040267774 | Lin et al. | Dec 2004 | A1 |
20050021394 | Miedema et al. | Jan 2005 | A1 |
20050080788 | Murata | Apr 2005 | A1 |
20050114198 | Koningstein et al. | May 2005 | A1 |
20050131884 | Gross et al. | Jun 2005 | A1 |
20050163375 | Grady | Jul 2005 | A1 |
20050172130 | Roberts | Aug 2005 | A1 |
20050177372 | Wang et al. | Aug 2005 | A1 |
20050193015 | Logston | Sep 2005 | A1 |
20050226511 | Short | Oct 2005 | A1 |
20050238198 | Brown et al. | Oct 2005 | A1 |
20050238238 | Xu et al. | Oct 2005 | A1 |
20050249398 | Khamene et al. | Nov 2005 | A1 |
20050256820 | Dugan et al. | Nov 2005 | A1 |
20050262428 | Little et al. | Nov 2005 | A1 |
20050281439 | Lange | Dec 2005 | A1 |
20050289163 | Gordon et al. | Dec 2005 | A1 |
20050289590 | Cheok et al. | Dec 2005 | A1 |
20060004745 | Kuhn et al. | Jan 2006 | A1 |
20060015580 | Gabriel et al. | Jan 2006 | A1 |
20060020958 | Allamanche et al. | Jan 2006 | A1 |
20060033163 | Chen | Feb 2006 | A1 |
20060050993 | Stenliford | Mar 2006 | A1 |
20060069668 | Braddy et al. | Mar 2006 | A1 |
20060080311 | Potok et al. | Apr 2006 | A1 |
20060100987 | Leurs | May 2006 | A1 |
20060112035 | Cecchi et al. | May 2006 | A1 |
20060120626 | Perlmutter | Jun 2006 | A1 |
20060129822 | Snijder et al. | Jun 2006 | A1 |
20060217818 | Fujiwara | Sep 2006 | A1 |
20060217828 | Hicken | Sep 2006 | A1 |
20060218191 | Gopalakrishnan | Sep 2006 | A1 |
20060224529 | Kermani | Oct 2006 | A1 |
20060236343 | Chang | Oct 2006 | A1 |
20060242130 | Sadri et al. | Oct 2006 | A1 |
20060248558 | Barton et al. | Nov 2006 | A1 |
20060251338 | Gokturk et al. | Nov 2006 | A1 |
20060251339 | Gokturk | Nov 2006 | A1 |
20060253423 | McLane et al. | Nov 2006 | A1 |
20060288002 | Epstein et al. | Dec 2006 | A1 |
20070022374 | Huang et al. | Jan 2007 | A1 |
20070033170 | Sull et al. | Feb 2007 | A1 |
20070038614 | Guha | Feb 2007 | A1 |
20070042757 | Jung et al. | Feb 2007 | A1 |
20070061302 | Ramer et al. | Mar 2007 | A1 |
20070067304 | Ives | Mar 2007 | A1 |
20070074147 | Wold | Mar 2007 | A1 |
20070083611 | Farago et al. | Apr 2007 | A1 |
20070091106 | Moroney | Apr 2007 | A1 |
20070130159 | Gulli et al. | Jun 2007 | A1 |
20070136782 | Ramaswamy et al. | Jun 2007 | A1 |
20070156720 | Maren | Jul 2007 | A1 |
20070196013 | Li | Aug 2007 | A1 |
20070244902 | Seide et al. | Oct 2007 | A1 |
20070253594 | Lu et al. | Nov 2007 | A1 |
20070298152 | Baets | Dec 2007 | A1 |
20080049789 | Vedantham et al. | Feb 2008 | A1 |
20080072256 | Boicey et al. | Mar 2008 | A1 |
20080079729 | Brailovsky | Apr 2008 | A1 |
20080109433 | Rose | May 2008 | A1 |
20080152231 | Gokturk | Jun 2008 | A1 |
20080159622 | Agnihotri et al. | Jul 2008 | A1 |
20080165861 | Wen et al. | Jul 2008 | A1 |
20080166020 | Kosaka | Jul 2008 | A1 |
20080201299 | Lehikoinen et al. | Aug 2008 | A1 |
20080201314 | Smith et al. | Aug 2008 | A1 |
20080201361 | Castro et al. | Aug 2008 | A1 |
20080228995 | Tan et al. | Sep 2008 | A1 |
20080237359 | Silverbrook et al. | Oct 2008 | A1 |
20080247543 | Mick et al. | Oct 2008 | A1 |
20080253737 | Kimura et al. | Oct 2008 | A1 |
20080263579 | Mears et al. | Oct 2008 | A1 |
20080270373 | Oostveen et al. | Oct 2008 | A1 |
20080270569 | McBride | Oct 2008 | A1 |
20080294278 | Borgeson | Nov 2008 | A1 |
20080307454 | Ahanger et al. | Dec 2008 | A1 |
20080313140 | Pereira et al. | Dec 2008 | A1 |
20090022472 | Bronstein | Jan 2009 | A1 |
20090024641 | Quigley et al. | Jan 2009 | A1 |
20090034791 | Doretto | Feb 2009 | A1 |
20090037088 | Taguchi | Feb 2009 | A1 |
20090043637 | Eder | Feb 2009 | A1 |
20090043818 | Raichelgauz | Feb 2009 | A1 |
20090080759 | Bhaskar | Mar 2009 | A1 |
20090096634 | Emam et al. | Apr 2009 | A1 |
20090125544 | Brindley | May 2009 | A1 |
20090157575 | Schobben et al. | Jun 2009 | A1 |
20090165031 | Li et al. | Jun 2009 | A1 |
20090172030 | Schiff et al. | Jul 2009 | A1 |
20090208106 | Dunlop et al. | Aug 2009 | A1 |
20090208118 | Csurka | Aug 2009 | A1 |
20090216761 | Raichelgauz | Aug 2009 | A1 |
20090220138 | Zhang et al. | Sep 2009 | A1 |
20090245573 | Saptharishi et al. | Oct 2009 | A1 |
20090254572 | Redlich et al. | Oct 2009 | A1 |
20090278934 | Ecker | Nov 2009 | A1 |
20090282218 | Raichelgauz et al. | Nov 2009 | A1 |
20090297048 | Slotine et al. | Dec 2009 | A1 |
20100042646 | Raichelgauz | Feb 2010 | A1 |
20100082684 | Churchill | Apr 2010 | A1 |
20100104184 | Bronstein et al. | Apr 2010 | A1 |
20100111408 | Matsuhira | May 2010 | A1 |
20100125569 | Nair et al. | May 2010 | A1 |
20100161652 | Bellare | Jun 2010 | A1 |
20100162405 | Cook et al. | Jun 2010 | A1 |
20100191391 | Zeng | Jul 2010 | A1 |
20100198626 | Cho et al. | Aug 2010 | A1 |
20100212015 | Jin et al. | Aug 2010 | A1 |
20100284604 | Chrysanthakopoulos | Nov 2010 | A1 |
20100293057 | Haveliwala et al. | Nov 2010 | A1 |
20100306193 | Pereira | Dec 2010 | A1 |
20100312736 | Kello | Dec 2010 | A1 |
20100318493 | Wessling | Dec 2010 | A1 |
20100325138 | Lee et al. | Dec 2010 | A1 |
20100325581 | Finkelstein et al. | Dec 2010 | A1 |
20110029620 | Bonforte | Feb 2011 | A1 |
20110035373 | Berg | Feb 2011 | A1 |
20110038545 | Bober | Feb 2011 | A1 |
20110055585 | Lee | Mar 2011 | A1 |
20110164180 | Lee | Jul 2011 | A1 |
20110164810 | Zang et al. | Jul 2011 | A1 |
20110216209 | Fredlund et al. | Sep 2011 | A1 |
20110218946 | Stern et al. | Sep 2011 | A1 |
20110246566 | Kashef | Oct 2011 | A1 |
20110276680 | Rimon | Nov 2011 | A1 |
20110296315 | Lin et al. | Dec 2011 | A1 |
20120131454 | Shah | May 2012 | A1 |
20120133497 | Sasaki | May 2012 | A1 |
20120136853 | Kennedy et al. | May 2012 | A1 |
20120167133 | Carroll et al. | Jun 2012 | A1 |
20120179642 | Sweeney et al. | Jul 2012 | A1 |
20120179751 | Ahn | Jul 2012 | A1 |
20120185445 | Borden et al. | Jul 2012 | A1 |
20120207346 | Kohli et al. | Aug 2012 | A1 |
20120221470 | Lyon | Aug 2012 | A1 |
20120227074 | Hill et al. | Sep 2012 | A1 |
20120239690 | Asikainen et al. | Sep 2012 | A1 |
20120239694 | Avner et al. | Sep 2012 | A1 |
20120265735 | McMillan et al. | Oct 2012 | A1 |
20120294514 | Saunders et al. | Nov 2012 | A1 |
20120299961 | Ramkumar et al. | Nov 2012 | A1 |
20120301105 | Rehg et al. | Nov 2012 | A1 |
20120331011 | Raichelgauz et al. | Dec 2012 | A1 |
20130043990 | Al-Jafar | Feb 2013 | A1 |
20130066856 | Ong et al. | Mar 2013 | A1 |
20130067364 | Berntson et al. | Mar 2013 | A1 |
20130086499 | Dyor et al. | Apr 2013 | A1 |
20130089248 | Remiszewski et al. | Apr 2013 | A1 |
20130103814 | Carrasco | Apr 2013 | A1 |
20130151522 | Aggarwal et al. | Jun 2013 | A1 |
20130159298 | Mason et al. | Jun 2013 | A1 |
20130212493 | Krishnamurthy | Aug 2013 | A1 |
20130226820 | Sedota, Jr. | Aug 2013 | A1 |
20130226930 | Amgren et al. | Aug 2013 | A1 |
20130227023 | Raichelgauz et al. | Aug 2013 | A1 |
20130283401 | Pabla et al. | Oct 2013 | A1 |
20130346412 | Raichelgauz et al. | Dec 2013 | A1 |
20140019264 | Wachman et al. | Jan 2014 | A1 |
20140025692 | Pappas | Jan 2014 | A1 |
20140059443 | Tabe | Feb 2014 | A1 |
20140095425 | Sipple | Apr 2014 | A1 |
20140111647 | Atsmon | Apr 2014 | A1 |
20140125703 | Roveta et al. | May 2014 | A1 |
20140147829 | Jerauld | May 2014 | A1 |
20140149918 | Asokan et al. | May 2014 | A1 |
20140152698 | Kim et al. | Jun 2014 | A1 |
20140156691 | Conwell | Jun 2014 | A1 |
20140169681 | Drake | Jun 2014 | A1 |
20140176604 | Venkitaraman et al. | Jun 2014 | A1 |
20140193077 | Shiiyama et al. | Jul 2014 | A1 |
20140198986 | Marchesotti | Jul 2014 | A1 |
20140201330 | Lozano Lopez | Jul 2014 | A1 |
20140250032 | Huang et al. | Sep 2014 | A1 |
20140282655 | Roberts | Sep 2014 | A1 |
20140300722 | Garcia | Oct 2014 | A1 |
20140330830 | Raichelgauz et al. | Nov 2014 | A1 |
20140341476 | Kulick et al. | Nov 2014 | A1 |
20140363044 | Williams et al. | Dec 2014 | A1 |
20140379477 | Sheinfeld | Dec 2014 | A1 |
20150033150 | Lee | Jan 2015 | A1 |
20150052089 | Kozloski et al. | Feb 2015 | A1 |
20150100562 | Kohlmeier et al. | Apr 2015 | A1 |
20150117784 | Lin | Apr 2015 | A1 |
20150120627 | Hunzinger et al. | Apr 2015 | A1 |
20150127516 | Studnitzer et al. | May 2015 | A1 |
20150134688 | Jing | May 2015 | A1 |
20150213325 | Krishnamoorthi | Jul 2015 | A1 |
20150248586 | Gaidon et al. | Sep 2015 | A1 |
20150254344 | Kulkarni et al. | Sep 2015 | A1 |
20150286742 | Zhang et al. | Oct 2015 | A1 |
20150286872 | Medioni et al. | Oct 2015 | A1 |
20150324356 | Gutierrez et al. | Nov 2015 | A1 |
20150332588 | Bulan et al. | Nov 2015 | A1 |
20150363644 | Wnuk | Dec 2015 | A1 |
20160007083 | Gurha | Jan 2016 | A1 |
20160026707 | Ong et al. | Jan 2016 | A1 |
20160132194 | Grue et al. | May 2016 | A1 |
20160210525 | Yang | Jul 2016 | A1 |
20160221592 | Puttagunta | Aug 2016 | A1 |
20160275766 | Venetianer et al. | Sep 2016 | A1 |
20160306798 | Guo et al. | Oct 2016 | A1 |
20160342683 | Kwon | Nov 2016 | A1 |
20160357188 | Ansari | Dec 2016 | A1 |
20170017638 | Satyavarta et al. | Jan 2017 | A1 |
20170032257 | Sharifi | Feb 2017 | A1 |
20170041254 | Agara Venkatesha Rao | Feb 2017 | A1 |
20170109602 | Kim | Apr 2017 | A1 |
20170154241 | Shambik et al. | Jun 2017 | A1 |
20170255620 | Raichelgauz | Sep 2017 | A1 |
20170262437 | Raichelgauz | Sep 2017 | A1 |
20170323568 | Inoue | Nov 2017 | A1 |
20180081368 | Watanabe | Mar 2018 | A1 |
20180101177 | Cohen | Apr 2018 | A1 |
20180108258 | Dilger | Apr 2018 | A1 |
20180157903 | Tu et al. | Jun 2018 | A1 |
20180157916 | Doumbouya | Jun 2018 | A1 |
20180158323 | Takenaka | Jun 2018 | A1 |
20180189613 | Wolf et al. | Jul 2018 | A1 |
20180204111 | Zadeh | Jul 2018 | A1 |
20180268292 | Choi | Sep 2018 | A1 |
20180373929 | Ye | Dec 2018 | A1 |
20190005726 | Nakano | Jan 2019 | A1 |
20190034764 | Oh | Jan 2019 | A1 |
20190039627 | Yamamoto | Feb 2019 | A1 |
20190043274 | Hayakawa | Feb 2019 | A1 |
20190045244 | Balakrishnan | Feb 2019 | A1 |
20190056718 | Satou | Feb 2019 | A1 |
20190065951 | Luo | Feb 2019 | A1 |
20190096135 | Mutto et al. | Mar 2019 | A1 |
20190171912 | Vallespi-Gonzalez et al. | Jun 2019 | A1 |
20190188501 | Ryu | Jun 2019 | A1 |
20190220011 | Della Penna | Jul 2019 | A1 |
20190279046 | Han et al. | Sep 2019 | A1 |
20190304102 | Chen et al. | Oct 2019 | A1 |
20190317513 | Zhang | Oct 2019 | A1 |
20190364492 | Azizi | Nov 2019 | A1 |
20190384303 | Muller | Dec 2019 | A1 |
20190384312 | Herbach | Dec 2019 | A1 |
20190385460 | Magzimof | Dec 2019 | A1 |
20190389459 | Berntorp | Dec 2019 | A1 |
20200004248 | Healey | Jan 2020 | A1 |
20200004251 | Zhu | Jan 2020 | A1 |
20200004265 | Zhu | Jan 2020 | A1 |
20200005631 | Visintainer | Jan 2020 | A1 |
20200018606 | Wolcott | Jan 2020 | A1 |
20200018618 | Ozog | Jan 2020 | A1 |
20200020212 | Song | Jan 2020 | A1 |
20200050973 | Stenneth | Feb 2020 | A1 |
20200073977 | Montemerlo | Mar 2020 | A1 |
20200090484 | Chen | Mar 2020 | A1 |
20200097756 | Hashimoto | Mar 2020 | A1 |
20200133307 | Kelkar | Apr 2020 | A1 |
20200043326 | Tao | Jun 2020 | A1 |
20200175384 | Zhang | Jun 2020 | A1 |
20220126864 | Moustafa | Apr 2022 | A1 |
20220161815 | Van Beek | May 2022 | A1 |
20220187847 | Cella | Jun 2022 | A1 |
Number | Date | Country |
---|---|---|
1085464 | Jan 2007 | EP |
0231764 | Apr 2002 | WO |
2003067467 | Aug 2003 | WO |
2005027457 | Mar 2005 | WO |
2007049282 | May 2007 | WO |
2014076002 | May 2014 | WO |
2014137337 | Sep 2014 | WO |
2016040376 | Mar 2016 | WO |
2016070193 | May 2016 | WO |
Entry |
---|
Jasinschi et al., A Probabilistic Layered Framework for Integrating Multimedia Content and Context Information, 2002, IEEE, p. 2057-2060. (Year: 2002). |
Jones et al., “Contextual Dynamics of Group-Based Sharing Decisions”, 2011, University of Bath, p. 1777-1786. (Year: 2011). |
Iwamoto, “Image Signature Robust to Caption Superimpostion for Video Sequence Identification”, IEEE, pp. 3185-3188 (Year: 2006). |
Cooperative Multi-Scale Convolutional Neural, Networks for Person Detection, Markus Eisenbach, Daniel Seichter, Tim Wengefeld, and Horst-Michael Gross Ilmenau University of Technology, Neuroinformatics and Cognitive Robotics Lab (Year; 2016). |
Chen, Yixin, James Ze Wang, and Robert Krovetz. “CLUE: cluster-based retrieval of images by unsupervised learning.” IEEE transactions on Image Processing 14.8 (2005); 1187-1201. (Year: 2005). |
Wusk et al (Non-Invasive detection of Respiration and Heart Rate with a Vehicle Seat Sensor; www.mdpi.com/journal/sensors; Published: May 8, 2018). (Year: 2018). |
Chen, Tiffany Yu-Han, et al. “Glimpse: Continuous, real-time object recognition on mobile devices.” Proceedings of the 13th ACM Confrecene on Embedded Networked Sensor Systems. 2015. (Year: 2015). |
Zhou et al, “Ensembling neural networks: Many could be better than all”, National Laboratory for Novel Software Technology, Nanjing University, Hankou Road 22, Nanjing 210093, PR China Received Nov. 16, 2001, Available online Mar. 12, 2002, pp. 239-263. |
Zhou et al, “Medical Diagnosis With C4.5 Rule Preceded by Artificial Neural Network Ensemble”, IEEE Transactions in Information Technology in Biomedicine, vol. 7, Issue: 1, Mar. 2003, pp. 37-42. |
Zhu et al., “Technology-Assisted Dietary Assesment”, Proc SPIE. Mar. 20, 2008, pp. 1-15. |
Zou et al., “A Content-Based Image Authentication System with Lossless Data Hiding”, ICME 2003, pp. 213-216. |
“Computer Vision Demonstration Website”, Electronics and Computer Science, University of Southampton, 2005, USA. |
Big Bang Theory Series 04 Episode 12, aired Jan. 6, 2011; [retrieved from Internet: ]. |
Boari et al, “Adaptive Routing for Dynamic Applications in Massively Parallel Architectures”, 1995 IEEE, Spring 1995, pp. 1-14. |
Burgsteiner et al., “Movement Prediction from Real-World Images Using a Liquid State machine”, Innovations in Applied Artificial Intelligence Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence, LNCS, Springer-Verlag, BE, vol. 3533, Jun. 2005, pp. 121-130. |
Cernansky et al, “Feed-forward Echo State Networks”, Proceedings of International Joint Conference on Neural Networks, Montreal, Canada, Jul. 31-Aug. 4, 2005, pp. 1-4. |
Chinchor, Nancy A. et al.; Multimedia Analysis + Visual Analytics = Multimedia Analytics; IEEE Computer Society 2010; pp. 52-60. (Year: 2010). |
Fathy et al, “A Parallel Design and Implementation For Backpropagation Neural Network Using MIMD Architecture”, 8th Mediterranean Electrotechnical Conference, 19'96, MELECON '96, Date of Conference: May 13-16, 1996, vol. 3 pp. 1472-1475, vol. 3. |
Freisleben et al, “Recognition of Fractal Images Using a Neural Network”, Lecture Notes in Computer Science, 1993, vol. 6861, 1993, pp. 631-637. |
Garcia, “Solving the Weighted Region Least Cost Path Problem Using Transputers”, Naval Postgraduate School, Monterey, California, Dec. 1989. |
Guo et al, AdOn: An Intelligent Overiay Video Advertising System (Year: 2009). |
Hogue, “Tree Pattern Inference and Matching for Wrapper Induction on the World Wide Web”, Master's Thesis, Massachusetts Institute of Technology, Jun. 2004, pp. 1-106. |
Howlett et al, “A Multi-Computer Neural Network Architecture in a Virtual Sensor System Application”, International Journal of knowledge-based intelligent engineering systems, 4 (2). pp. 86-93, 133N 1327-2314. |
Hua et al., “Robust Video Signature Based on Ordinal Measure”, Image Processing, 2004, 2004 International Conference on Image Processing (ICIP), vol. 1, IEEE, pp. 685-688, 2004. |
International Search Report and Written Opinion for PCT/US2016/050471, ISA/RU, Moscow, RU, dated May 4, 2017. |
International Search Report and Written Opinion for PCT/US2016/054634, ISA/RU, Moscow, RU, dated Mar. 16, 2017. |
International Search Report and Written Opinion for PCT/US2017/015831, ISA/RU, Moscow, RU, dated Apr. 20, 2017. |
Johnson et al, “Pulse-Coupled Neural Nets: Translation, Rotation, Scale, Distortion, and Intensity Signal Invariance for Images”, Applied Optics, vol. 33, No. 26, 1994, pp. 6239-6253. |
Lau et al., “Semantic Web Service Adaptation Model for a Pervasive Learning Scenario”, 2008 IEEE Conference on Innovative Technologies in Intelligent Systems and Industrial Applications, 2008, pp. 98-103. |
Li et al (“Matching Commercial Clips from TV Streams Using a Unique, Robust and Compact Signature” 2005) (Year: 2005). |
Lin et al., “Generating robust digital signature for image/video authentication”, Multimedia and Security Workshop at ACM Multimedia '98, Bristol, U.K, Sep. 1998, pp. 245-251. |
Lu et al, “Structural Digital Signature for Image Authentication: An Incidental Distortion Resistant Scheme”, IEEE Transactions on Multimedia, vol. 5, No. 2, Jun. 2003, pp. 161-173. |
Lyon, “Computational Models of Neural Auditory Processing”, IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP '84, Date of Conference: Mar. 1984, vol. 9, pp. 41-44. |
Ma Et El “Semantics modeling based image retrieval system using neural networks”, 2005. |
Marian Stewart B et al., “Independent component representations for face recognition”, Proceedings of the SPIE Symposium on Electronic Imaging: Science and Technology; Conference on Human Vision and Electronic Imaging III, San Jose, California, Jan. 1998, pp. 1-12. |
May et al, “The Transputer”, Springer-Verlag Berlin Heidelberg 1989, vol. 41. |
McNamara et al., “Diversity Decay in opportunistic Content Sharing Systems”, 2011 IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks, pp. 1-3. |
Morad et al., “Performance, Power Efficiency and Scalability of Asymmetric Cluster Chip Multiprocessors”, Computer Architecture Letters, vol. 4, Jul. 4, 2005, pp. 1-4, XP002466254. |
Nagy et al, “A Transputer, Based, Flexible, Real-Time Control System for Robotic Manipulators”, UKACC International Conference on Control '96, Sep. 2-5, 1996, Conference Publication No. 427, IEE 1996. |
Natschlager et al., “The ”Liquid Computer“: A novel strategy for real-time computing on time series”, Special Issue on Foundations of Information Processing of telematik, vol. 8, No. 1, 2002, pp. 39-43, XP002466253. |
Odinaev et al, “Cliques in Neural Ensembles as Perception Carriers”, Technion—Institute of Technology, 2006 International Joint Conference on neural Networks, Canada, 2006, pp. 285-292. |
Ortiz-Boyer et al, “CIXL2: A Crossover Operator for Evolutionary Algorithms Based on Population Features”, Journal of Artificial Intelligence Research 24 (2005) Submitted Nov. 2004; published Jul. 2005, pp. 1-48. |
Pandya etal. A Survey on QR Codes: in context of Research and Application. International Journal of Emerging Technology and U Advanced Engineering. ISSN 2250-2459, ISO 9001:2008 Certified Journal, vol. 4, Issue 3, Mar. 2014 (Year: 2014). |
Queluz, “Content-Based Integrity Protection of Digital Images”, SPIE Conf. on Security and Watermarking of Multimedia Contents, San Jose, Jan. 1999, pp. 85-93. |
Rui, Yong et al. “Relevance feedback: a power tool for interactive content-based image retrieval.” IEEE Transactions an circuits and systems for video technology 8.5 (1998): 644-655. |
Santos et al., “SCORM-MPEG: an Ontology of Interoperable Metadata for multimediaand E-Learning”, 23rd International Conference on Software, Telecommunications and Computer Networks (SoftCom), 2015, pp. 224-228. |
Scheper et al, “Nonlinear dynamics in neural computation”, ESANN'2006 proceedings—European Symposium on Artificial Neural Networks, Bruges (Belgium), Apr. 26-28, 2006, d-side publication, ISBN 2-930307-06-4, pp. 1-12. |
Schneider et al, “A Robust Content based Digital Signature for Image Authentication”, Proc. ICIP 1996, Lausane, Switzerland, Oct. 1996, pp. 227-230. |
Srihari et al., “Intelligent Indexing and Semantic Retrieval of Multimodal Documents”, Kluwer Academic Publishers, May 2000, vol. 2, Issue 2-3, pp. 245-275. |
Srihari, Rohini K. “Automatic indexing and content-based retrieval of captioned images” Computer 0 (1995): 49-56. |
Stolberg et al (“HIBRID-SOC: a Multi-Core SOC Architecture for Multimedia Signal Processing” 2003). |
Stolberg et al, “HIBRID-SOC: a Mul ti-Core SOC Architecture for Mul Timedia Signal Processing”, 2003 IEEE, pp. 189-194. |
Theodoropoulos et al, “Simulating Asynchronous Architectures on Transputer Networks”, Proceedings of the Fourth Euromicro Workshop on Parallel and Distributed Processing, 1996 PDP '96, pp. 274-281. |
Vallet et al (“Personalized Content Retrieval in Context Using Ontological Knowledge” Mar. 2007) (Year: 2007). |
Verstraeten et al, “Isolated word recognition with the Liquid State Machine: a case study”, Department of Electronics and Information Systems, Ghent University, Sint-Pietersnieuwstraat 41, 9000 Gent, Belgium, Available onlline Jul. 14, 2005, pp. 521-528. |
Wang et al., “Classifying Objectionable Websites Based onImage Content”, Stanford University, pp. 1-12. |
Ware et al, “Locating and Identifying Components in a Robot's Workspace using a Hybrid Computer Architecture” Proceedings of the 1995 IEEE International Symposium on Intelligent Control, Aug. 27-29, 1995, pp. 139-144. |
Whitby-Strevens, “The transputer”, 1985 IEEE, pp. 292-300. |
Wilk et al., “The Potential of Social-Aware Multimedia Prefetching on Mobile Devices”, International Conference and Workshops on networked Systems (NetSys), 2015, pp. 1-5. |
Yanagawa et al, “Columbia University's Baseline Detectors for 374 LSCOM Semantic Visual Concepts”, Columbia University ADVENT Technical Report # 222-2006-8, Mar. 20, 2007, pp. 1-17. |
Yanagawa et al., “Columbia University's Baseline Detectors for 374 LSCOM Semantic Visual Concepts”, Columbia University ADVENT Technical Report #222, 2007, pp. 2006-2008. |
Number | Date | Country | |
---|---|---|---|
20200293904 A1 | Sep 2020 | US |
Number | Date | Country | |
---|---|---|---|
62817766 | Mar 2019 | US |