Method for object detection using shallow neural networks

Information

  • Patent Grant
  • 10789527
  • Patent Number
    10,789,527
  • Date Filed
    Wednesday, November 13, 2019
    6 years ago
  • Date Issued
    Tuesday, September 29, 2020
    5 years ago
Abstract
A method that may include feeding an input image and downscaled versions of the input image to multiple branches of an object detector calculating, by the multiple branches, candidate bounding boxes; and selecting bounding boxes. The multiple branches comprise multiple shallow neural networks that are followed by multiple region units. Each branch includes a shallow neural network and a region unit. The multiple shallow neural networks are multiple instances of a single trained shallow neural network. The single trained shallow neural network is trained to detect objects having a size that is within a predefined size range and to ignore objects having a size that is outside the predefined size range.
Description
BACKGROUND

Object detection is required in various systems and applications.


There is a growing need to provide a method and a system that may be able to provide highly accurate object detection at a low cost.


SUMMARY

There may be provided a method for object detection, the method may include receiving an input image by an input of an object detector; wherein the object detector may include multiple branches; generating at least one downscaled version of the input image; feeding the input image to a first branch of the multiple branches; feeding each one of the at least one downscale version of the input image to a unique branch of the multiple branches, one downscale version of the image per branch; calculating, by the multiple branches, candidate bounding boxes that may be indicative of candidate objects that appear in the input image and each one of the at least one downscaled version of the input image; selecting bounding boxes out of the candidate bounding boxes, by a selection unit that followed the multiple branches; wherein the multiple branches may include multiple shallow neural networks that may be followed by multiple region units; wherein each branch may include a shallow neural network and a region unit; wherein the multiple shallow neural networks may be multiple instances of a single trained shallow neural network; and wherein the single trained shallow neural network may be trained to detect objects having a size that may be within a predefined size range and to ignore objects having a size that may be outside the predefined size range.


The method may include generating the multiple downscaled applying a same downscaling ratio between (a) the input image and a first downscaled version of the image and between (b) the first downscale version of the input image to a second downscale version of the input image.


There may be provided a non-transitory computer readable medium for detecting an object by an object detector, wherein the non-transitory computer readable medium may store instructions for: receiving an input image by an input of the object detector; wherein the object detector may include multiple branches; generating at least one downscaled version of the input image; feeding the input image to a first branch of the multiple branches; feeding each one of the at least one downscale version of the input image to a unique branch of the multiple branches, one downscale version of the image per branch; calculating, by the multiple branches, candidate bounding boxes that may be indicative of candidate objects that appear in the input image and each one of the at least one downscaled version of the input image; selecting bounding boxes out of the candidate bounding boxes, by a selection unit that follows the multiple branches; wherein the multiple branches may include multiple shallow neural networks that may be followed by multiple region units; wherein each branch may include a shallow neural network and a region unit; wherein the multiple shallow neural networks may be multiple instances of a single trained shallow neural network; and wherein the single trained shallow neural network may be trained to detect objects having a size that may be within a predefined size range and to ignore objects having a size that may be outside the predefined size range.


The non-transitory computer readable medium that may store instructions for generating the multiple downscaled applying a same downscaling ratio between (a) the input image and a first downscaled version of the image and between (b) the first downscale version of the input image to a second downscale version of the input image.


There may be provided an object detection system that may include an input, a downscaling unit, multiple branches, and a selection unit; wherein the input may be configured to receive an input image; wherein the downscaling unit may be configured to generate at least one downscaled version of the input image; wherein the multiple branches may be configured to receive the input image and the at least one downscaled version of the input image, one image per branch; wherein the multiple branches may be configured to calculate candidate bounding boxes that may be indicative of candidate objects that appear in the input image and each one of the at least one downscaled version of the input image; wherein the selection unit may be configured to select bounding boxes out of the candidate bounding boxes; wherein the multiple branches may include multiple shallow neural networks that may be followed by multiple region units; wherein each branch may include a shallow neural network and a region unit; wherein the multiple shallow neural networks may be multiple instances of a single trained shallow neural network; and wherein the single trained shallow neural network may be trained to detect objects having a size that may be within a predefined size range and to ignore objects having a size that may be outside the predefined size range.


The downscaling unit may be configured to generate the multiple downscaled applying a same downscaling ratio between (a) the input image and a first downscaled version of the image and between (b) the first downscale version of the input image to a second downscale version of the input image.


The predefined size range may range between (a) about ten by ten pixels, till (b) about one hundred by one hundred pixels.


The predefined size range may range between (a) about sixteen by sixteen pixels, till (b) about one hundred and twenty pixels by one hundred and twenty pixels.


The predefined size range may range between (a) about eighty by eighty pixels, till (b) about one hundred by one hundred pixels.


The multiple branches may be three branches and wherein there may be two downscaled versions of the input image.


The at least one downscaled version of the image may be multiple downscaled versions of the input image.


The first downscale version of the input image may have a width that may be one half of a width of the input image and a length that may be one half of a length of a length of an input image.


The each shallow neural network may have up to four layers.


The each shallow neural network may have up to five layers.





BRIEF DESCRIPTION OF THE DRAWINGS

The embodiments of the disclosure will be understood and appreciated more fully from the following detailed description, taken in conjunction with the drawings in which:



FIG. 1 illustrates an example of an object detection system;



FIG. 2 illustrates an example of an image, two objects, two bounding boxes and a bounding box output;



FIG. 3 illustrates an image and various objects;



FIG. 4 illustrates an example of a training process; and



FIG. 5 illustrates an example of a method for object detection.





DESCRIPTION OF EXAMPLE EMBODIMENTS

In the following detailed description, numerous specific details are set forth in order to provide a thorough understanding of the invention. However, it will be understood by those skilled in the art that the present invention may be practiced without these specific details. In other instances, well-known methods, procedures, and components have not been described in detail so as not to obscure the present invention.


The subject matter regarded as the invention is particularly pointed out and distinctly claimed in the concluding portion of the specification. The invention, however, both as to organization and method of operation, together with objects, features, and advantages thereof, may best be understood by reference to the following detailed description when read with the accompanying drawings.


It will be appreciated that for simplicity and clarity of illustration, elements shown in the figures have not necessarily been drawn to scale. For example, the dimensions of some of the elements may be exaggerated relative to other elements for clarity. Further, where considered appropriate, reference numerals may be repeated among the figures to indicate corresponding or analogous elements.


Because the illustrated embodiments of the present invention may for the most part, be implemented using electronic components and circuits known to those skilled in the art, details will not be explained in any greater extent than that considered necessary as illustrated above, for the understanding and appreciation of the underlying concepts of the present invention and in order not to obfuscate or distract from the teachings of the present invention.


Any reference in the specification to a method should be applied mutatis mutandis to a device or system capable of executing the method and/or to a non-transitory computer readable medium that stores instructions for executing the method.


Any reference in the specification to a system or device should be applied mutatis mutandis to a method that may be executed by the system, and/or may be applied mutatis mutandis to non-transitory computer readable medium that stores instructions executable by the system.


Any reference in the specification to a non-transitory computer readable medium should be applied mutatis mutandis to a device or system capable of executing instructions stored in the non-transitory computer readable medium and/or may be applied mutatis mutandis to a method for executing the instructions.


Any combination of any module or unit listed in any of the figures, any part of the specification and/or any claims may be provided.


There may be provided a low power object detection system (detector), non-transitory computer readable medium and method. The object detection system, non-transitory computer readable medium and method also provide a high level semantic multi scale feature maps, without impairing the speed of the detector.


Each additional convolution layer increases the detector physical receptive field, therefore, enlargement of the maximum object size that is managed by the detector result in increasing the required number of convolution layers.


Since each layer of the convolutional network has a fixed receptive field, it is not optimal to detect objects of different scales utilizing only features generated by the last convolutional layer.


Shallow feature maps have small receptive fields that are used to detect small objects, and deep feature maps have large receptive fields that are used to detect large objects.


Nevertheless, shallow features might have less semantic information, which may impair the detection of small objects.


The above theorem was very popular at the first object detectors that have been released until 2016. In contrast, at the last few years, we are witness to a new trend of very deep networks integrated into state of the art object detectors. hence state of the art object detectors detect small objects using feature maps extracted from enormous receptive fields.


That implementation forces ineffective forward propagation of small object features from earlier network's stages to deeper network's stages.


Thus while managing larger objects required deeper network, the ineffective detection of small objects increase the number of channels along the network or complicating the memory data transition between layers.


Interesting theorem explaining the motivation of using feature maps that have large receptive fields for small objects suggests that in order to detect a small object we take advantage of the context information surrounding it. For example, we can easily distinguish between small car driving on the roadway and boat sailing on the sea employing the surrounding background information which is notably more differently than the internal context information of that two small objects.


However, real-time automotive application can't take advantage of deeper/wider/Complex networks because those networks are not applicable due to power consuming limitation requirements.



FIG. 1 illustrates an object detection system 9000 that includes an input 9010 (illustrated as receiving input image 9001), a downscaling unit 9011, multiple branches (such as three branches 9013(1), 9013(2) and 9013(3)), and a selection unit 9016 such as a non-maximal suppression unit.


Input 910 may be configured to receive an input image by an input of an object detector.


Downscaling unit 9011 may be configured to generate at least one downscaled version of the input image.


The multiple branches 9013(1), 9013(2) and 9013(3) may be configured to receive the input image and the at least one downscaled version of the input image, one image per branch.


Input image 9001 is fed to first branch 9013(1) that is configured to calculate first candidate bounding boxes that may be indicative of candidate objects that appear in the input image.


First downscaled version of the input image (DVII) 9002 is fed to second branch 9013(2) that is configured to calculate second candidate bounding boxes that may be indicative of candidate objects that appear in first DVII 9002.


Second DVII 9003 is fed to third branch 9013(3) that is configured to calculate third candidate bounding boxes that may be indicative of candidate objects that appear in second DVII 9003.


The multiple branches may include multiple shallow neural networks that may be followed by multiple region units.


In first branch 9013(1), a first shallow neural network 9012(1) is followed by first region unit 9014(1).


The first shallow neural network 9012(1) outputs a first shallow neural network output (SNNO-1) 9003(1) that may be a tensor with multiple features per segment of the input image. The first region unit 9014(1) is configured to receive SNNO-19003(1) and calculate and output first candidate bounding boxes 9005(1).


The second shallow neural network 9012(2) outputs a second SNNO (SNNO-2) 9003(2) that may be a tensor with multiple features per segment of the first DVII 9002. The second region unit 9014(2) is configured to receive SNNO-29003(2) and calculate and output second candidate bounding boxes 9005(2).


The third shallow neural network 9012(3) outputs a third SNNO (SNNO-3) 9003(3) that may be a tensor with multiple features per segment of the second DVII 9003. The third region unit 9014(3) is configured to receive SNNO-39003(3) and calculate and output third candidate bounding boxes 9005(3).


The multiple shallow neural networks 9012(1), 9012(2) and 9012(3) may be multiple instances of a single trained shallow neural network.


The single trained shallow neural network may be trained to detect objects having a size that may be within a predefined size range and to ignore objects having a size that may be outside the predefined size range.


The selection unit 9016 may be configured to select bounding boxes (denoted BB output 9007) out of the first, second and third candidate bounding boxes.


The selected bounding boxes may be further processed to detect the objects. Additionally or alternatively—the bounding boxes may provide the output of the object detection system.


The branch that receives the input image is configured to detect objects that have a size that is within the predefined size range.


The predefined size range may span along certain fractions of the input image (for example—between less than a percent to less than ten percent of the input image—although other fractions may be selected).


The predefined size range may be tailored to the expected size of images within a certain distance range from the sensor.


The predefined size range may span along certain numbers of pixels—for example between (a) about 10, 20, 30, 40, 50, 60, 70, 80, and 90 pixels by about 10, 20, 30, 40, 50, 60, 70, 80, and 90, and (b) about 100, 110, 120, 130, 140, 150, 160 pixels by about 100, 110, 120, 130, 140, 150, 160 pixels.


Each branch that receives a downscaled version of the input image (assuming of a certain downscaling factor) may detect objects have a size (within the downscaled version of the input image) that is within the predefined size range—and thus may detect images that appear in the input image having a size that is within a size range that equals the predefined range multiplied by the downscaling factor.


Assuming, for example that the input image is of 576×768 pixels (each pixel is represented by three colors), the first DVII is 288×384 pixels (each pixel is represented by three colors), and the second DVII is 144×192 pixels (each pixel is represented by three colors), that SNNO-1 has 85 features per each segment out 36×48 segments, that SNNO-2 has 85 features per each segment out 18×24 segments, that SNNO-3 has 85 features per each segment out 9×12 segments.


The assumption above as well as the example below are merely non-limiting examples of various values. Other values may be provided.


Under these assumptions, each shallow neural network may detect an object having a size between 20×20 to 100×100 pixels and physical receptive field around 200×200 pixels. This assumes automotive objects can be effectively represented using bounding box dimension below 100×100.


In contrast to a single model trained end to end, the following architecture contains several identical shallow neural networks.


The first branch detects small object (as appearing in the input image), the second branch detects medium objects (as appearing in the input image), and the third branch detects large objects (as appearing in the input image)—all may be within a limited predefined size range.


The number of branches, scales, and the downscale factor may differ from those illustrated in FIG. 1. For example—there may be two or more than three branches, the downscaling factor may differ from 2×2, downscaling factors between different images may differ from each other, and the like.



FIG. 2 illustrates an example of an image 9020, two objects-pedestrian 9021 and car 9022, two bounding boxes 9023 (bounding pedestrian 9021) and 9024 (bounding car 9022) and a bounding box output 9025.


The bounding box output 9025 may include coordinates (x,y,h,w) of the bounding boxes, objectiveness and class. The coordinate indicate the location (x,y) as well as the height and width of the bounding boxes. Objectiveness provides a confidence level that an object exists. Class—class of object—for example cat, dog, vehicle, person . . . ). The (x,y) coordinates may represent the center of the bounding box.


The object detection may be compliant to any flavor of YOLO—but other object detection schemes may be applied.



FIG. 3 illustrates an image 9030 and various objects 9031, 9032, 9033 and 9034.


Objects 9033 and 9034 are outside the predefined size range and should be ignored of. The single trained neural network is trained to detect objects 9031 and 9032 (within the predefined size range) and ignore objects 9033 and 9034.



FIG. 4 illustrates an example of a training process.


Test images 9040 are fed to single shallow neural network 9017 that outputs, for each test image, a single shallow neural network output that may be a tensor with multiple features per segment of the test image. The region unit 9018 is configured to receive the output from single shallow neural network 9017 and calculate and output candidate bounding boxes per test image. Actual results such as the output candidate bounding boxes per test image or an output of a selecting unit 9019 (that follows region unit 9018) may be fed to error calculation unit 9050.


Error calculation unit 9050 also receives desired results 9045—objects of a size of the predefined range that should be detected by the single shallow neural network 9017.


Error calculation unit 9050 calculates an error 9055 between the the actual results and the desired results- and the error is fed to the single shallow neural network 9017 during the training process.



FIG. 5 illustrates an example of a method 9100 for object detection.


Method 9100 may include the following steps:

    • Step 9101 of receiving an input image by an input of an object detector. The object detector may include multiple branches. The multiple branches may include multiple shallow neural networks that may be followed by multiple region units. Each branch may include a shallow neural network and a region unit. The multiple shallow neural networks may be multiple instances of a single trained shallow neural network. The single trained shallow neural network may be trained to detect objects having a size that may be within a predefined size range and to ignore objects having a size that may be outside the predefined size range.
    • Step 9102 of generating at least one downscaled version of the input image.
    • Step 9103 of feeding the input image to a first branch of the multiple branches.
    • Step 9104 of feeding each one of the at least one downscale version of the input image to a unique branch of the multiple branches, one downscale version of the image per branch.
    • Step 9105 of calculating, by the multiple branches, candidate bounding boxes that may be indicative of candidate objects that appear in the input image and each one of the at least one downscaled version of the input image.
    • Step 9106 of selecting bounding boxes out of the candidate bounding boxes, by a selection unit that followed the multiple branches.
    • Step 9107 of outputting the bonding boxes and/or further processing the bounding boxes.


Method 9100 may include training the single trained shallow neural network.


While the foregoing written description of the invention enables one of ordinary skill to make and use what is considered presently to be the best mode thereof, those of ordinary skill will understand and appreciate the existence of variations, combinations, and equivalents of the specific embodiment, method, and examples herein. The invention should therefore not be limited by the above described embodiment, method, and examples, but by all embodiments and methods within the scope and spirit of the invention as claimed.


In the foregoing specification, the invention has been described with reference to specific examples of embodiments of the invention. It will, however, be evident that various modifications and changes may be made therein without departing from the broader spirit and scope of the invention as set forth in the appended claims.


Moreover, the terms “front,” “back,” “top,” “bottom,” “over,” “under” and the like in the description and in the claims, if any, are used for descriptive purposes and not necessarily for describing permanent relative positions. It is understood that the terms so used are interchangeable under appropriate circumstances such that the embodiments of the invention described herein are, for example, capable of operation in other orientations than those illustrated or otherwise described herein.


Furthermore, the terms “assert” or “set” and “negate” (or “deassert” or “clear”) are used herein when referring to the rendering of a signal, status bit, or similar apparatus into its logically true or logically false state, respectively. If the logically true state is a logic level one, the logically false state is a logic level zero. And if the logically true state is a logic level zero, the logically false state is a logic level one.


Those skilled in the art will recognize that the boundaries between logic blocks are merely illustrative and that alternative embodiments may merge logic blocks or circuit elements or impose an alternate decomposition of functionality upon various logic blocks or circuit elements. Thus, it is to be understood that the architectures depicted herein are merely exemplary, and that in fact many other architectures may be implemented which achieve the same functionality.


Any arrangement of components to achieve the same functionality is effectively “associated” such that the desired functionality is achieved. Hence, any two components herein combined to achieve a particular functionality may be seen as “associated with” each other such that the desired functionality is achieved, irrespective of architectures or intermedial components. Likewise, any two components so associated can also be viewed as being “operably connected,” or “operably coupled,” to each other to achieve the desired functionality.


Furthermore, those skilled in the art will recognize that boundaries between the above described operations merely illustrative. The multiple operations may be combined into a single operation, a single operation may be distributed in additional operations and operations may be executed at least partially overlapping in time. Moreover, alternative embodiments may include multiple instances of a particular operation, and the order of operations may be altered in various other embodiments.


Also for example, in one embodiment, the illustrated examples may be implemented as circuitry located on a single integrated circuit or within a same device. Alternatively, the examples may be implemented as any number of separate integrated circuits or separate devices interconnected with each other in a suitable manner.


However, other modifications, variations and alternatives are also possible. The specifications and drawings are, accordingly, to be regarded in an illustrative rather than in a restrictive sense.


In the claims, any reference signs placed between parentheses shall not be construed as limiting the claim. The word ‘comprising’ does not exclude the presence of other elements or steps then those listed in a claim. Furthermore, the terms “a” or “an,” as used herein, are defined as one or more than one. Also, the use of introductory phrases such as “at least one” and “one or more” in the claims should not be construed to imply that the introduction of another claim element by the indefinite articles “a” or “an” limits any particular claim containing such introduced claim element to inventions containing only one such element, even when the same claim includes the introductory phrases “one or more” or “at least one” and indefinite articles such as “a” or “an.” The same holds true for the use of definite articles. Unless stated otherwise, terms such as “first” and “second” are used to arbitrarily distinguish between the elements such terms describe. Thus, these terms are not necessarily intended to indicate temporal or other prioritization of such elements. The mere fact that certain measures are recited in mutually different claims does not indicate that a combination of these measures cannot be used to advantage.


While certain features of the invention have been illustrated and described herein, many modifications, substitutions, changes, and equivalents will now occur to those of ordinary skill in the art. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the true spirit of the invention.


It is appreciated that various features of the embodiments of the disclosure which are, for clarity, described in the contexts of separate embodiments may also be provided in combination in a single embodiment. Conversely, various features of the embodiments of the disclosure which are, for brevity, described in the context of a single embodiment may also be provided separately or in any suitable sub-combination.


It will be appreciated by persons skilled in the art that the embodiments of the disclosure are not limited by what has been particularly shown and described hereinabove. Rather the scope of the embodiments of the disclosure is defined by the appended claims and equivalents thereof

Claims
  • 1. A method for object detection, the method comprises: receiving an input image by an input of an object detector; wherein the object detector comprises multiple branchesgenerating at least one downscaled version of the input image;feeding the input image to a first branch of the multiple branches;feeding each one of the at least one downscale version of the input image to a unique branch of the multiple branches, one downscale version of the image per branch;calculating, by the multiple branches, candidate bounding boxes that are indicative of candidate objects that appear in the input image and each one of the at least one downscaled version of the input image;selecting bounding boxes out of the candidate bounding boxes, by a selection unit that followed the multiple branches;wherein the multiple branches comprise multiple shallow neural networks that are followed by multiple region units; wherein each branch comprises a shallow neural network and a region unit;wherein the multiple shallow neural networks are multiple instances of a single trained shallow neural network; andwherein the single trained shallow neural network is trained to detect objects having a size that is within a predefined size range and to ignore objects having a size that is outside the predefined size range.
  • 2. The method according to claim 1 wherein the predefined size range ranges between (a) ten by ten pixels, till (b) one hundred by one hundred pixels.
  • 3. The method according to claim 1 wherein the predefined size range ranges between (a) sixteen by sixteen pixels, till (b) one hundred and twenty pixels by one hundred and twenty pixels.
  • 4. The method according to claim 1 wherein the predefined size range ranges between (a) eighty by eighty pixels, till (b) one hundred by one hundred pixels.
  • 5. The method according to claim 1 wherein the multiple branches are three branches and wherein there are two downscaled versions of the input image.
  • 6. The method according to claim 1 wherein the generating of the at least one downscaled version of the input image comprises generating multiple downscaled versions of the input image.
  • 7. The method according to claim 6 comprising generating the multiple downscaled applying a same downscaling ratio between (a) the input image and a first downscaled version of the image and between (b) the first downscale version of the input image to a second downscale version of the input image.
  • 8. The method according to claim 6 wherein a first downscale version of the input image has a width that is one half of a width of the input image and a length that is one half of a length of a length of an input image.
  • 9. The method according to claim 1 wherein each shallow neural network has up to four layers.
  • 10. The method according to claim 1 wherein each shallow neural network has up to five layers.
  • 11. A non-transitory computer readable medium for detecting an object by an object detector, wherein the non-transitory computer readable medium stores instructions for: receiving an input image by an input of the object detector; wherein the object detector comprises multiple branches;generating at least one downscaled version of the input image;feeding the input image to a first branch of the multiple branches;feeding each one of the at least one downscale version of the input image to a unique branch of the multiple branches, one downscale version of the image per branch;calculating, by the multiple branches, candidate bounding boxes that are indicative of candidate objects that appear in the input image and each one of the at least one downscaled version of the input image;selecting bounding boxes out of the candidate bounding boxes, by a selection unit that follows the multiple branches;wherein the multiple branches comprise multiple shallow neural networks that are followed by multiple region units; wherein each branch comprises a shallow neural network and a region unit;wherein the multiple shallow neural networks are multiple instances of a single trained shallow neural network; andwherein the single trained shallow neural network is trained to detect objects having a size that is within a predefined size range and to ignore objects having a size that is outside the predefined size range.
  • 12. The non-transitory computer readable medium according to claim 11 wherein the predefined size range ranges between (a) ten by ten pixels, till (b) one hundred by one hundred pixels.
  • 13. The non-transitory computer readable medium according to claim 11 wherein the predefined size range ranges between (a) sixteen by sixteen pixels, till (b) one hundred and twenty pixels by one hundred and twenty pixels.
  • 14. The non-transitory computer readable medium according to claim 11 wherein the predefined size range ranges between (a) eighty by eighty pixels, till (b) one hundred by one hundred pixels.
  • 15. The non-transitory computer readable medium according to claim 11 wherein the multiple branches are three branches and wherein there are two downscaled versions of the input image.
  • 16. The non-transitory computer readable medium according to claim 11 wherein the generating of the at least one downscaled version of the input image comprises generating multiple downscaled versions of the input image.
  • 17. The non-transitory computer readable medium according to claim 16 that stores instructions for generating the multiple downscaled applying a same downscaling ratio between (a) the input image and a first downscaled version of the image and between (b) the first downscale version of the input image to a second downscale version of the input image.
  • 18. The non-transitory computer readable medium according to claim 16 wherein a first downscale version of the input image has a width that is one half of a width of the input image and a length that is one half of a length of a length of an input image.
  • 19. The non-transitory computer readable medium according to claim 11 wherein each shallow neural network has up to four layers.
  • 20. The non-transitory computer readable medium according to claim 11 wherein each shallow neural network has up to five layers.
  • 21. An object detection system that comprises an input, a downscaling unit, multiple branches, and a selection unit; wherein the input is configured to receive an input image;wherein the downscaling unit is configured to generate at least one downscaled version of the input image;wherein the multiple branches are configured to receive the input image and the at least one downscaled version of the input image, one image per branch;wherein the multiple branches are configured to calculate candidate bounding boxes that are indicative of candidate objects that appear in the input image and each one of the at least one downscaled version of the input image;wherein the selection unit is configured to select bounding boxes out of the candidate bounding boxes;wherein the multiple branches comprise multiple shallow neural networks that are followed by multiple region units; wherein each branch comprises a shallow neural network and a region unit;wherein the multiple shallow neural networks are multiple instances of a single trained shallow neural network; andwherein the single trained shallow neural network is trained to detect objects having a size that is within a predefined size range and to ignore objects having a size that is outside the predefined size range.
  • 22. The object detection system according to claim 21 wherein the predefined size range ranges between (a) ten by ten pixels, till (b) one hundred by one hundred pixels.
  • 23. The object detection system according to claim 21 wherein the predefined size range ranges between (a) sixteen by sixteen pixels, till (b) one hundred and twenty pixels by one hundred and twenty pixels.
  • 24. The object detection system according to claim 21 wherein the predefined size range ranges between (a) eighty by eighty pixels, till (b) one hundred by one hundred pixels.
  • 25. The object detection system according to claim 21 wherein the multiple branches are three branches and wherein there are two downscaled versions of the input image.
  • 26. The object detection system according to claim 21 wherein the generating of the at least one downscaled version of the input image comprises generating multiple downscaled versions of the input image.
  • 27. The object detection system according to claim 26 wherein the downscaling unit is configured to generate the multiple downscaled applying a same downscaling ratio between (a) the input image and a first downscaled version of the image and between (b) the first downscale version of the input image to a second downscale version of the input image.
  • 28. The object detection system according to claim 26 wherein a first downscale version of the input image has a width that is one half of a width of the input image and a length that is one half of a length of a length of an input image.
  • 29. The object detection system according to claim 21 wherein each shallow neural network has up to four layers.
  • 30. The object detection system according to claim 21 wherein each shallow neural network has up to five layers.
CROSS REFERENCE

This application claims priority from U.S. provisional patent 62/827,121 filing date Mar. 31 2019.

US Referenced Citations (358)
Number Name Date Kind
4733353 Jaswa Mar 1988 A
4932645 Schorey et al. Jun 1990 A
4972363 Nguyen et al. Nov 1990 A
5078501 Hekker et al. Jan 1992 A
5214746 Fogel et al. May 1993 A
5307451 Clark Apr 1994 A
5412564 Ecer May 1995 A
5436653 Ellis et al. Jul 1995 A
5568181 Greenwood et al. Oct 1996 A
5638425 Meador, I et al. Jun 1997 A
5745678 Herzberg et al. Apr 1998 A
5754938 Herz et al. May 1998 A
5763069 Jordan Jun 1998 A
5806061 Chaudhuri et al. Sep 1998 A
5835087 Herz et al. Nov 1998 A
5835901 Duvoisin et al. Nov 1998 A
5852435 Vigneaux et al. Dec 1998 A
5870754 Dimitrova et al. Feb 1999 A
5873080 Coden et al. Feb 1999 A
5887193 Takahashi et al. Mar 1999 A
5926812 Hilsenrath et al. Jul 1999 A
5978754 Kumano Nov 1999 A
5991306 Burns et al. Nov 1999 A
6052481 Grajski et al. Apr 2000 A
6070167 Qian et al. May 2000 A
6076088 Paik et al. Jun 2000 A
6122628 Castelli et al. Sep 2000 A
6128651 Cezar Oct 2000 A
6137911 Zhilyaev Oct 2000 A
6144767 Bottou et al. Nov 2000 A
6147636 Gershenson Nov 2000 A
6163510 Lee et al. Dec 2000 A
6243375 Speicher Jun 2001 B1
6243713 Nelson et al. Jun 2001 B1
6275599 Adler et al. Aug 2001 B1
6314419 Faisal Nov 2001 B1
6329986 Cheng Dec 2001 B1
6381656 Shankman Apr 2002 B1
6411229 Kobayashi Jun 2002 B2
6422617 Fukumoto et al. Jul 2002 B1
6507672 Watkins et al. Jan 2003 B1
6523046 Liu et al. Feb 2003 B2
6524861 Anderson Feb 2003 B1
6546405 Gupta et al. Apr 2003 B2
6550018 Abonamah et al. Apr 2003 B1
6557042 He et al. Apr 2003 B1
6594699 Sahai et al. Jul 2003 B1
6601026 Appelt et al. Jul 2003 B2
6611628 Sekiguchi et al. Aug 2003 B1
6618711 Ananth Sep 2003 B1
6643620 Contolini et al. Nov 2003 B1
6643643 Lee et al. Nov 2003 B1
6665657 Dibachi Dec 2003 B1
6681032 Bortolussi et al. Jan 2004 B2
6704725 Lee Mar 2004 B1
6732149 Kephart May 2004 B1
6742094 Igari May 2004 B2
6751363 Natsev et al. Jun 2004 B1
6751613 Lee et al. Jun 2004 B1
6754435 Kim Jun 2004 B2
6763069 Divakaran et al. Jul 2004 B1
6763519 McColl et al. Jul 2004 B1
6774917 Foote et al. Aug 2004 B1
6795818 Lee Sep 2004 B1
6804356 Krishnamachari Oct 2004 B1
6813395 Kinjo Nov 2004 B1
6819797 Smith et al. Nov 2004 B1
6877134 Fuller et al. Apr 2005 B1
6901207 Watkins May 2005 B1
6938025 Lulich et al. Aug 2005 B1
6985172 Rigney et al. Jan 2006 B1
7013051 Sekiguchi et al. Mar 2006 B2
7020654 Najmi Mar 2006 B1
7023979 Wu et al. Apr 2006 B1
7043473 Rassool et al. May 2006 B1
7158681 Persiantsev Jan 2007 B2
7215828 Luo May 2007 B2
7260564 Lynn et al. Aug 2007 B1
7289643 Brunk et al. Oct 2007 B2
7299261 Oliver et al. Nov 2007 B1
7302089 Smits Nov 2007 B1
7302117 Sekiguchi et al. Nov 2007 B2
7313805 Rosin et al. Dec 2007 B1
7340358 Yoneyama Mar 2008 B2
7346629 Kapur et al. Mar 2008 B2
7353224 Chen et al. Apr 2008 B2
7376672 Weare May 2008 B2
7383179 Alves et al. Jun 2008 B2
7433895 Li et al. Oct 2008 B2
7464086 Black et al. Dec 2008 B2
7529659 Wold May 2009 B2
7657100 Gokturk et al. Feb 2010 B2
7660468 Gokturk et al. Feb 2010 B2
7805446 Potok et al. Sep 2010 B2
7860895 Scofield et al. Dec 2010 B1
7872669 Darrell et al. Jan 2011 B2
7921288 Hildebrand Apr 2011 B1
7933407 Keidar et al. Apr 2011 B2
8023739 Hohimer et al. Sep 2011 B2
8266185 Raichelgauz et al. Sep 2012 B2
8285718 Ong et al. Oct 2012 B1
8312031 Raichelgauz et al. Nov 2012 B2
8315442 Gokturk et al. Nov 2012 B2
8345982 Gokturk et al. Jan 2013 B2
8386400 Raichelgauz et al. Feb 2013 B2
8396876 Kennedy et al. Mar 2013 B2
8418206 Bryant et al. Apr 2013 B2
8442321 Chang et al. May 2013 B1
8457827 Ferguson et al. Jun 2013 B1
8495489 Everingham Jul 2013 B1
8635531 Graham et al. Jan 2014 B2
8655801 Raichelgauz et al. Feb 2014 B2
8655878 Kulkarni et al. Feb 2014 B1
8799195 Raichelgauz et al. Aug 2014 B2
8799196 Raichelquaz et al. Aug 2014 B2
8818916 Raichelgauz et al. Aug 2014 B2
8868861 Shimizu et al. Oct 2014 B2
8886648 Procopio et al. Nov 2014 B1
8954887 Tseng et al. Feb 2015 B1
8990199 Ramesh et al. Mar 2015 B1
9009086 Raichelgauz et al. Apr 2015 B2
9104747 Raichelgauz et al. Aug 2015 B2
9165406 Gray et al. Oct 2015 B1
9311308 Sankarasubramaniam et al. Apr 2016 B2
9323754 Ramanathan et al. Apr 2016 B2
9466068 Raichelgauz et al. Oct 2016 B2
9646006 Raichelgauz et al. May 2017 B2
9679062 Schillings et al. Jun 2017 B2
9807442 Bhatia et al. Oct 2017 B2
9875445 Amer et al. Jan 2018 B2
9984369 Li et al. May 2018 B2
20010019633 Tenze et al. Sep 2001 A1
20010034219 Hewitt et al. Oct 2001 A1
20010038876 Anderson Nov 2001 A1
20020004743 Kutaragi et al. Jan 2002 A1
20020010682 Johnson Jan 2002 A1
20020010715 Chinn et al. Jan 2002 A1
20020019881 Bokhari et al. Feb 2002 A1
20020032677 Morgenthaler et al. Mar 2002 A1
20020038299 Zernik et al. Mar 2002 A1
20020042914 Walker et al. Apr 2002 A1
20020072935 Rowse et al. Jun 2002 A1
20020087530 Smith et al. Jul 2002 A1
20020087828 Arimilli et al. Jul 2002 A1
20020091947 Nakamura Jul 2002 A1
20020107827 Benitez-Jimenez et al. Aug 2002 A1
20020113812 Walker et al. Aug 2002 A1
20020126002 Patchell Sep 2002 A1
20020126872 Brunk et al. Sep 2002 A1
20020129140 Peled et al. Sep 2002 A1
20020147637 Kraft et al. Oct 2002 A1
20020157116 Jasinschi Oct 2002 A1
20020163532 Thomas et al. Nov 2002 A1
20020174095 Lulich et al. Nov 2002 A1
20020184505 Mihcak et al. Dec 2002 A1
20030004966 Bolle et al. Jan 2003 A1
20030005432 Ellis et al. Jan 2003 A1
20030037010 Schmelzer Feb 2003 A1
20030041047 Chang et al. Feb 2003 A1
20030089216 Birmingham et al. May 2003 A1
20030093790 Logan et al. May 2003 A1
20030101150 Agnihotri et al. May 2003 A1
20030105739 Essafi et al. Jun 2003 A1
20030110236 Yang et al. Jun 2003 A1
20030115191 Copperman et al. Jun 2003 A1
20030126147 Essafi et al. Jul 2003 A1
20030140257 Peterka et al. Jul 2003 A1
20030165269 Fedorovskaya et al. Sep 2003 A1
20030174859 Kim Sep 2003 A1
20030184598 Graham Oct 2003 A1
20030200217 Ackerman Oct 2003 A1
20030217335 Chung et al. Nov 2003 A1
20030229531 Heckerman et al. Dec 2003 A1
20040095376 Graham et al. May 2004 A1
20040098671 Graham et al. May 2004 A1
20040111432 Adams et al. Jun 2004 A1
20040117638 Monroe Jun 2004 A1
20040128511 Sun et al. Jul 2004 A1
20040153426 Nugent Aug 2004 A1
20040162820 James et al. Aug 2004 A1
20040267774 Lin et al. Dec 2004 A1
20050021394 Miedema et al. Jan 2005 A1
20050080788 Murata Apr 2005 A1
20050114198 Koningstein et al. May 2005 A1
20050131884 Gross et al. Jun 2005 A1
20050163375 Grady Jul 2005 A1
20050172130 Roberts Aug 2005 A1
20050177372 Wang et al. Aug 2005 A1
20050226511 Short Oct 2005 A1
20050238198 Brown et al. Oct 2005 A1
20050238238 Xu et al. Oct 2005 A1
20050249398 Khamene et al. Nov 2005 A1
20050256820 Dugan et al. Nov 2005 A1
20050262428 Little et al. Nov 2005 A1
20050281439 Lange Dec 2005 A1
20050289163 Gordon et al. Dec 2005 A1
20050289590 Cheok et al. Dec 2005 A1
20060004745 Kuhn et al. Jan 2006 A1
20060015580 Gabriel et al. Jan 2006 A1
20060020958 Allamanche et al. Jan 2006 A1
20060033163 Chen Feb 2006 A1
20060050993 Stentiford Mar 2006 A1
20060069668 Braddy et al. Mar 2006 A1
20060080311 Potok et al. Apr 2006 A1
20060112035 Cecchi et al. May 2006 A1
20060129822 Snijder et al. Jun 2006 A1
20060217818 Fujiwara Sep 2006 A1
20060217828 Hicken Sep 2006 A1
20060218191 Gopalakrishnan Sep 2006 A1
20060224529 Kermani Oct 2006 A1
20060236343 Chang Oct 2006 A1
20060242130 Sadri et al. Oct 2006 A1
20060248558 Barton et al. Nov 2006 A1
20060251338 Gokturk et al. Nov 2006 A1
20060253423 McLane et al. Nov 2006 A1
20060288002 Epstein et al. Dec 2006 A1
20070022374 Huang et al. Jan 2007 A1
20070033170 Sull et al. Feb 2007 A1
20070038614 Guha Feb 2007 A1
20070042757 Jung et al. Feb 2007 A1
20070061302 Ramer et al. Mar 2007 A1
20070067304 Ives Mar 2007 A1
20070074147 Wold Mar 2007 A1
20070083611 Farago et al. Apr 2007 A1
20070091106 Moroney Apr 2007 A1
20070130159 Gulli et al. Jun 2007 A1
20070136782 Ramaswamy et al. Jun 2007 A1
20070156720 Maren Jul 2007 A1
20070244902 Seide et al. Oct 2007 A1
20070253594 Lu et al. Nov 2007 A1
20070298152 Baets Dec 2007 A1
20080049789 Vedantham et al. Feb 2008 A1
20080072256 Boicey et al. Mar 2008 A1
20080079729 Brailovsky Apr 2008 A1
20080152231 Gokturk et al. Jun 2008 A1
20080159622 Agnihotri et al. Jul 2008 A1
20080165861 Wen et al. Jul 2008 A1
20080201299 Lehikoinen et al. Aug 2008 A1
20080201314 Smith et al. Aug 2008 A1
20080201361 Castro et al. Aug 2008 A1
20080228995 Tan et al. Sep 2008 A1
20080237359 Silverbrook et al. Oct 2008 A1
20080247543 Mick et al. Oct 2008 A1
20080253737 Kimura et al. Oct 2008 A1
20080263579 Mears et al. Oct 2008 A1
20080270373 Oostveen et al. Oct 2008 A1
20080294278 Borgeson et al. Nov 2008 A1
20080307454 Ahanger et al. Dec 2008 A1
20080313140 Pereira et al. Dec 2008 A1
20090024641 Quigley et al. Jan 2009 A1
20090037088 Taguchi Feb 2009 A1
20090043637 Eder Feb 2009 A1
20090096634 Emam et al. Apr 2009 A1
20090125544 Brindley May 2009 A1
20090157575 Schobben et al. Jun 2009 A1
20090165031 Li et al. Jun 2009 A1
20090172030 Schiff et al. Jul 2009 A1
20090208106 Dunlop et al. Aug 2009 A1
20090208118 Csurka Aug 2009 A1
20090216761 Raichelgauz et al. Aug 2009 A1
20090220138 Zhang et al. Sep 2009 A1
20090245573 Saptharishi et al. Oct 2009 A1
20090254572 Redlich et al. Oct 2009 A1
20090282218 Raichelgauz et al. Nov 2009 A1
20090297048 Slotine et al. Dec 2009 A1
20100042646 Raichelgauz et al. Feb 2010 A1
20100082684 Churchill et al. Apr 2010 A1
20100104184 Bronstein et al. Apr 2010 A1
20100125569 Nair et al. May 2010 A1
20100162405 Cook et al. Jun 2010 A1
20100191391 Zeng Jul 2010 A1
20100198626 Cho et al. Aug 2010 A1
20100212015 Jin et al. Aug 2010 A1
20100284604 Chrysanthakopoulos Nov 2010 A1
20100293057 Haveliwala et al. Nov 2010 A1
20100312736 Kello Dec 2010 A1
20100318493 Wessling Dec 2010 A1
20100325138 Lee et al. Dec 2010 A1
20100325581 Finkelstein et al. Dec 2010 A1
20110035373 Berg et al. Feb 2011 A1
20110055585 Lee Mar 2011 A1
20110164180 Lee Jul 2011 A1
20110164810 Zang et al. Jul 2011 A1
20110216209 Fredlund et al. Sep 2011 A1
20110218946 Stern et al. Sep 2011 A1
20110276680 Rimon Nov 2011 A1
20110296315 Lin et al. Dec 2011 A1
20120131454 Shah May 2012 A1
20120136853 Kennedy et al. May 2012 A1
20120167133 Carroll et al. Jun 2012 A1
20120179642 Sweeney et al. Jul 2012 A1
20120185445 Borden et al. Jul 2012 A1
20120207346 Kohli et al. Aug 2012 A1
20120221470 Lyon Aug 2012 A1
20120227074 Hill et al. Sep 2012 A1
20120239690 Asikainen et al. Sep 2012 A1
20120239694 Avner et al. Sep 2012 A1
20120265735 McMillan et al. Oct 2012 A1
20120294514 Saunders et al. Nov 2012 A1
20120299961 Ramkumar et al. Nov 2012 A1
20120301105 Rehg et al. Nov 2012 A1
20120331011 Raichelgauz et al. Dec 2012 A1
20130043990 Al-Jafar Feb 2013 A1
20130066856 Ong et al. Mar 2013 A1
20130067364 Berntson et al. Mar 2013 A1
20130086499 Dyor et al. Apr 2013 A1
20130089248 Remiszewski et al. Apr 2013 A1
20130151522 Aggarwal et al. Jun 2013 A1
20130159298 Mason et al. Jun 2013 A1
20130226930 Amgren et al. Aug 2013 A1
20130227023 Raichelgauz et al. Aug 2013 A1
20130283401 Pabla et al. Oct 2013 A1
20130346412 Raichelgauz et al. Dec 2013 A1
20140019264 Wachman et al. Jan 2014 A1
20140025692 Pappas Jan 2014 A1
20140125703 Roveta et al. May 2014 A1
20140147829 Jerauld May 2014 A1
20140149918 Asokan et al. May 2014 A1
20140152698 Kim et al. Jun 2014 A1
20140156691 Conwell Jun 2014 A1
20140169681 Drake Jun 2014 A1
20140176604 Venkitaraman et al. Jun 2014 A1
20140193077 Shiiyama et al. Jul 2014 A1
20140198986 Marchesotti Jul 2014 A1
20140201330 Lopez et al. Jul 2014 A1
20140250032 Huang et al. Sep 2014 A1
20140282655 Roberts Sep 2014 A1
20140300722 Garcia Oct 2014 A1
20140330830 Raichelgauz et al. Nov 2014 A1
20140341476 Kulick et al. Nov 2014 A1
20140363044 Williams et al. Dec 2014 A1
20150052089 Kozloski et al. Feb 2015 A1
20150100562 Kohlmeier et al. Apr 2015 A1
20150117784 Lin et al. Apr 2015 A1
20150120627 Hunzinger et al. Apr 2015 A1
20150127516 Studnitzer et al. May 2015 A1
20150248586 Gaidon et al. Sep 2015 A1
20150254344 Kulkarni et al. Sep 2015 A1
20150286742 Zhang et al. Oct 2015 A1
20150286872 Medioni et al. Oct 2015 A1
20150324356 Gutierrez et al. Nov 2015 A1
20150332588 Bulan et al. Nov 2015 A1
20160007083 Gurha Jan 2016 A1
20160026707 Ong et al. Jan 2016 A1
20160132194 Grue et al. May 2016 A1
20160221592 Puttagunta et al. Aug 2016 A1
20160275766 Venetianer et al. Sep 2016 A1
20160306798 Guo et al. Oct 2016 A1
20170017638 Satyavarta et al. Jan 2017 A1
20170154241 Shambik et al. Jun 2017 A1
20180108258 Dilger Apr 2018 A1
20180157903 Tu et al. Jun 2018 A1
20180189613 Wolf Jul 2018 A1
20180373929 Ye Dec 2018 A1
20190096135 Mutto et al. Mar 2019 A1
20190171912 Vallespi-Gonzalez et al. Jun 2019 A1
20190279046 Han Sep 2019 A1
20190304102 Chen Oct 2019 A1
Foreign Referenced Citations (1)
Number Date Country
1085464 Jan 2007 EP
Non-Patent Literature Citations (113)
Entry
Zhou et al, “Ensembling neural networks: Many could be better than all”, National Laboratory for Novel Software Technology, Nanjing University, Hankou Road 22, Nanjing 210093, PR China Received Nov. 16, 2001, Available online Mar. 12, 2002, pp. 239-263.
Zhou et al, “Medical Diagnosis With C4.5 Rule Preceded by Artificial Neural Network Ensemble”, IEEE Transactions on Information Technology in Biomedicine, vol. 7, Issue: 1, Mar. 2003, pp. 37-42.
Zhu et al., “Technology-Assisted Dietary Assesment”, Proc SPIE. Mar. 20, 2008, pp. 1-15.
Akira et al., “Columbia University's Baseline Detectors for 374 LSCOM Semantic Visual Concepts”, Columbia University ADVENT Technical Report #222-2006-8, Mar. 20, 2007, pp. 17.
Amparo et al., “Real Time Speaker Localization And Detection System For Camera Steering in Multiparticipant Videoconferencing Environments”, IEEE International Conference on Acoustics, Speech and Signal Processing 2011,pp. 2592-2595.
Boari et al., “Adaptive Routing For Dynamic Applications In Massively Parallel Architectures”, IEEE Parallel & Distributed Technology: Systems & Applications (vol. 3, Issue: 1, Spring 1995), pp. 61-74.
Boyer et al., “A Crossover Operator for Evolutionary Algorithms Based on Population Features”, Journal of Artificial Intelligence Research vol. 24 (2005) pp. 1-48.
Brecheisen et al., ““Hierarchical Genre Classification for Large Music Collections”” , IEEE International Conference on Multimedia and Expo (ICME) 2006, pp. 1385-1388.
Burgsteiner et al., “Movement prediction from real-world images using a liquid state machine” ,International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems IEA/AIE 2005: Innovations in Applied Artificial Intelligence, pp. 121-130.
Cernansky et al., “Feed-forward echo state networks”, IEEE International Joint Conference on Neural Networks, 2005, vol. 3, pp. 1479-1482.
Chang et al., “VideoQ: a fully automated video retrieval system using motion sketches” , Fourth IEEE Workshop on Applications of Computer Vision. WACV'98 (Cat. No. 98EX201), Oct. 19-21, 1998, pp. 270-271.
Cho et al.,“Efficient Motion-Vector-Based Video Search Using Query By Clip”, IEEE International Conference on Multimedia and Expo (ICME) (IEEE Cat. No. 04TH8763), Year: 2004, vol. 2, pp. 1027-1030.
Clement et al.“Speaker diarization of heterogeneous web video files: A preliminary study”, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),May 22-27, 2011 pp. 4432-4435.
Cococcioni et al., “Automatic diagnosis of defects of rolling element bearings based on computational intelligence techniques”, Ninth International Conference on Intelligent Systems Design and Applications, Nov. 30-Dec. 2, 2009, pp. 970-975.
Emami et al., “Role of Spatiotemporal Oriented Energy Features for Robust Visual Tracking in Video Surveillance”, IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance Sep. 18-21, 2012, pp. 349-354.
Fathy et al., “A parallel design and implementation for backpropagation neural network using MIMD architecture”, 8th Mediterranean Electrotechnical Conference on Industrial Applications in Power Systems, Computer Science and Telecommunications (MELECON 96) ,May 16, 1996,1472-1476.
Foote et al.,“Content-based retrieval of music and audio”, Multimedia Storage and Archiving Systems II, Published in SPIE Proceedings vol. 3229, Oct. 6, 1997, p. 1.
Freisleben et al., “Recognition of fractal images using a neural network”,New Trends in Neural Computation, International Workshop on Artificial Neural Networks, IWANN '93 Sitges, Spain, Jun. 9-11, 1993: , pp. 632-637.
Ivan Garcia, “Solving The Weighted Region Least Cost Path Problem Using Transputers”, Naval Postgraduate School Monterey, California ,1989 pp. 73.
Gomes et al., “Audio Watermarking and Fingerprinting: For Which Applications?”, Journal of New Music Research 32(1) Mar. 2003 p. 1.
Gong et al., “A Knowledge-Based Mediator For Dynamic Integration Of Heterogeneous Multimedia Information Sources”, International Symposium on Intelligent Multimedia, Video and Speech Processing, Oct. 20-22, 2004, pp. 467-470.
Guo et al., “AdOn: An Intelligent Overlay Video Advertising System”, https://doi.org/10.1145/1571941.1572049, Jul. 2009, pp. 628-629.
Howlett et al., “A Multi-Computer Neural Network Architecture in a Virtual Sensor System Application”, International Journal of Knowledge-Based and Intelligent Engineering Systems, vol. 4, Published—Apr. 2000 pp. 86-93.
Hua et al., “Robust Video Signature Based on Ordinal Measure”, International Conference on Image Processing ICIP '04. 2004, Oct. 24-27, 2004, pp. 5.
Iwamoto et al, “Image Signature Robust To Caption Superimposition For Video Sequence Identification”, 2006 International Conference on Image Processing ,IEEE, Atlanta, GA, Oct. 8-11, 2006, pp. 3185-3188.
Herbert Jaeger, “The“ echo state” approach to analysing and training recurrent neural networks”, Bonn, Germany: German National Research Center for Information Technology GMD Technical Report, 148 ,2001, pp. 43.
Jianping Fan et al., “Concept-Oriented Indexing Of Video Databases: Toward Semantic Sensitive Retrieval and Browsing”, IEEE Transactions on Image Processing, vol. 13, No. 7, Jul. 2004, p. 1.
John L. Johnson., Pulse-coupled neural nets: translation, rotation, scale, distortion, and intensity signal invariance for images, vol. 33, No. 26, Applied Optics, Sep. 10, 1994, pp. 6239-6253.
Odinaev et al., “Cliques in Neural Ensembles as Perception Carriers”, 2006 International Joint Conference on Neural Networks Sheraton Vancouver Wail Centre Hotel, Vancouver, BC, Canada Jul. 16-21, 2006, pp. 285-292.
Kabary et al., “SportSense: Using Motion Queries to Find Scenes in Sports Videos”, DOI: 10.1145/2505515.2508211, Oct. 2013, pp. 2489-2491.
Keiji Yanai., “Generic Image Classification Using Visual Knowledge on the Web”, DOI: 10.1145/957013.957047, Jan. 2003, pp. 167-176.
Lau et al., “Semantic Web Service Adaptation Model for a Pervasive Learning Scenario”, Proceedings of the 2008 IEEE Conference on Innovative Technologies in Intelligent Systems and Industrial Applications Multimedia University, Cyberjaya, Malaysia. Jul. 12-13, 2008, pp. 98-103.
Li et al., “Matching Commercial Clips from TV Streams Using a Unique, Robust and Compact Signature”, DOI: 10.1109/DICTA.2005.52, Jan. 2006, pp. 7.
Lin et al., “Generating Robust Digital Signature for Image/Video Authentication”, Multimedia and Security Workshop at ACM Multimedia '98. Bristol. U.K., Sep. 1998, pp. 49-54.
Löytynoja et al., “Audio Encryption Using Fragile Watermarking”, DOI: 10.1109/ICICS.2005.1689175, Jul. 2015, pp. 881-885.
Richard F. Lyon., “Computational Models of Neural Auditory Processing”, DOI: 10.1109/ICASSP.1984.1172756, ICASSP '84. IEEE International Conference on Acoustics, Speech, and Signal Processing, Jan. 29, 2003, pp. 5.
Maass et al., “Computational Models for Generic Cortical Microcircuits”, DOI: 10.1201/9780203494462.ch18, Jun. 10, 2003, pp. 1-26.
Mandhaoui et al., “Emotional speech characterization based on multi-features fusion for face-to-face interaction”, 2009 International conference on signals, circuits and systems ,DOI: 10.1109/ICSCS.2009.5412691, Dec. 2009, pp. 1-6.
May et al., “The Transputer”, Neural Computers. Springer Study Edition, vol. 41. Springer, Berlin, Heidelberg, DOI: 10.1007/978-3-642-83740-1_48, Jan. 1989 pp. 477-486.
McNamara et al., “Diversity Decay in Opportunistic Content Sharing Systems”, DOI: 10.1109/WoWMoM.2011.5986211 2011 IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks Aug. 15, 2011, pp. 1-3.
Mei et al., “Contextual in-image Advertising”,MM'OS, Oct. 26-31, 2008. Vancouver, British Columbia, Canada. Copyright 2008 ACM 978-1-60558-303—Jul. 8, 2010, DOI: 10.1145/1459359.1459418 ⋅ Source: DBLP, Jan. 2008, pp. 439-448.
Mei et al., “VideoSense—Towards Effective Online Video Advertising”, MM'07, Sep. 23-28, 2007, Augsburg, Bavaria, Germany.Copyright 2007 ACM 978-1-59593-701—Aug. 7, 0009 . . . $5.00, Jan. 2007, pp. 1075-1084.
Mladenovic et al., “Electronic Tour Guide for Android Mobile Platform with Multimedia Travel Book” 20th Telecommunications forum TELFOR 2012, DOI: 10.1109/TELFOR.2012.6419494, Nov. 20-22, 2012, pp. 1460-1463.
Morad et al., “Performance, Power Efficiency and Scalability of Asymmetric Cluster Chip Multiprocessors”, IEEE Computer Architecture Letters, vol. 5, 2006, DOI 10.1109/L-CA.2006.6, Jul. 5, 2006, pp. 4.
Nagy et al., “A Transputer Based, Flexible, Real-Time Control System for Robotic Manipulators”, UKACC International Conference on Control '96, Conference Publication No. 427 © IEE 1996, Sep. 2-5, 1996, pp. 84-89.
Nam et al., “Audio-Visual Content-Based Violent Scene Characterization”, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No. 98CB36269), DOI: 10.1109/ICIP.1998.723496, pp. 353-357.
Natschläger et al., “The “Liquid Computer”: A Novel Strategy for Real-Time Computing on Time Series”, Jan. 2002, pp. 1-7.
Nouza et al., “Large-Scale Processing, Indexing and Search System for Czech Audio-Visual Cultural Heritage Archives”, DOI: 10.1109/MMSP.2012.6343465, Sep. 2012, pp. 337-342.
Odinaev., “Cliques to Neural Ensembles as Perception Carriers”, 2006 International Joint Conference on Neural Networks Sheraton Vancouver Wail Centre Hotel, Vancouver, BC, Canada, DOI: 10.1109/IJCNN.2006.246693, Jul. 16-21, 2006, pp. 285-292.
Park et al., “Compact Video Signatures for Near-Duplicate Detection on Mobile Devices”, DOI: 10.1109/ISCE.2014.6884293, Jun. 2014, pp. 1-2.
Maria Paula Queluz., “Content-based integrity protection of digital images”, San Jose. California ⋅Jan. 1999 SPIE vol. 3657 ⋅0277-786X/99/$10.00, DOI: 10.1117/12.344706, Apr. 1999, pp. 85-93.
Raichelgauz et al., “Co-evoletiooary Learning in Liquid Architectures”, DOI: 10.1007/11494669_30, Jun. 2005, pp. 241-248.
Ribert et al., “An Incremental Hierarchical Clustering”, Vision Interface '99, Trois-Rivieres, Canada, May 19-21, pp. 586-591.
Boari et al, “Adaptive Routing for Dynamic Applications in Massively Parallel Architectures”, 1995 IEEE, Spring 1995, pp. 1-14.
Burgsteiner et al., “Movement Prediction from Real-World Images Using a Liquid State machine”, Innovations in Applied Artificial Intelligence Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence, LNCS, Springer-Verlag, BE, vol. 3533, Jun. 2005, pp. 121-130.
Chinchor, Nancy A. et al.; Multimedia Analysis + Visual Analytics = Multimedia Analytics; IEEE Computer Society; 2010; pp. 52-60. (Year: 2010).
Fathy et al, “A Parallel Design and Implementation For Backpropagation Neural Network Using MIMD Architecture”, 8th Mediterranean Electrotechnical Conference, 19'96. MELECON '96, Date of Conference: May 13-16, 1996, vol. 3 pp. 1472-1475, vol. 3.
Freisleben et al, “Recognition of Fractal Images Using a Neural Network”, Lecture Notes in Computer Science, 1993, vol. 6861, 1993, pp. 631-637.
Garcia, “Solving the Weighted Region Least Cost Path Problem Using Transputers”, Naval Postgraduate School, Monterey, California, Dec. 1989.
Guo et al, AdOn: An Intelligent Overlay Video Advertising System (Year: 2009).
Hogue, “Tree Pattern Inference and Matching for Wrapper Induction on the World Wide Web”, Master's Thesis, Massachusetts Institute of Technology, Jun. 2004, pp. 1-106.
Howlett et al, “A Multi-Computer Neural Network Architecture in a Virtual Sensor System Application”, International journal of knowledge-based intelligent engineering systems, 4 (2). pp. 86-93, 133N 1327-2314.
Hua et al., “Robust Video Signature Based on Ordinal Measure”, Image Processing, 2004, 2004 International Conference on Image Processing (ICIP), vol. 1, IEEE, pp. 685-688, 2004.
Johnson et al, “Pulse-Coupled Neural Nets: Translation, Rotation, Scale, Distortion, and Intensity Signal Invariance for Images”, Applied Optics, vol. 33, No. 26, 1994, pp. 6239-6253.
Lau et al., “Semantic Web Service Adaptation Model for a Pervasive Learning Scenario”, 2008 IEEE Conference on Innovative Technologies in Intelligent Systems and Industrial Applications, 2008, pp. 98-103.
Li et al (“Matching Commercial Clips from TV Streams Using a Unique, Robust and Compact Signature” 2005) (Year: 2005).
Lin et al., “Generating robust digital signature for image/video authentication”, Multimedia and Security Workshop at ACM Multimedia '98, Bristol, U.K., Sep. 1998, pp. 245-251.
Lyon, “Computational Models of Neural Auditory Processing”, IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP '84, Date of Conference: Mar. 1984, vol. 9, pp. 41-44.
May et al, “The Transputer”, Springer-Verlag Berlin Heidelberg 1989, vol. 41.
McNamara et al., “Diversity Decay in opportunistic Content Sharing Systems”, 2011 IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks, pp. 1-3.
Morad et al., “Performance, Power Efficiency and Scalability of Asymmetric Cluster Chip Multiprocessors”, Computer Architecture Letters, vol. 4, Jul. 4, 2005, pp. 1-4, XP002466254.
Nagy et al, “A Transputer, Based, Flexible, Real-Time Control System for Robotic Manipulators”, UKACC International Conference on Control '96, Sep. 2-5, 1996, Conference Publication No. 427, IEE 1996.
Natschlager et al., “The “Liquid Computer”: A novel strategy for real-time computing on time series”, Special Issue on Foundations of Information Processing of telematik, vol. 8, No. 1, 2002, pp. 39-43, XP002466253.
Odinaev et al, “Cliques in Neural Ensembles as Perception Carriers”, Technion—Institute of Technology, 2006 International Joint Conference on neural Networks, Canada, 2006, pp. 285-292.
Ortiz-Boyer et al, “CIXL2: A Crossover Operator for Evolutionary Algorithms Based on Population Features”, Journal of Artificial Intelligence Research 24 (2005) Submitted Nov. 2004; published Jul. 2005, pp. 1-48.
Pandya etal. A Survey on QR Codes: in context of Research and Application. International Journal of Emerging Technology and U Advanced Engineering. ISSN 2250-2459, ISO 9001:2008 Certified Journal, vol. 4, Issue 3, Mar. 2014 (Year: 2014).
Queluz, “Content-Based Integrity Protection of Digital Images”, SPIE Conf. on Security and Watermarking of Multimedia Contents, San Jose, Jan. 1999, pp. 85-93.
Santos et al., “SCORM-MPEG: an Ontology of Interoperable Metadata for multimediaand E-Leaming”, 23rd International Conference on Software, Telecommunications and Computer Networks (SoftCom), 2015, pp. 224-228.
Scheper et al, “Nonlinear dynamics in neural computation”, ESANN'2006 proceedings—European Symposium on Artificial Neural Networks, Bruges (Belgium), Apr. 26-28, 2006, d-side publication, ISBN 2-930307-06-4, pp. 1-12.
Schneider et al, “A Robust Content based Digital Signature for Image Authentication”, Proc. ICIP 1996, Lausane, Switzerland, Oct. 1996, pp. 227-230.
Stolberg et al (“HIBRID-SOC: A Multi-Core SOC Architecture for Multimedia Signal Processing” 2003).
Stolberg et al, “HIBRID-SOC: A Mul Ti-Core SOC Architecture for Mul Timedia Signal Processing”, 2003 IEEE, pp. 189-194.
Theodoropoulos et al, “Simulating Asynchronous Architectures on Transputer Networks”, Proceedings of the Fourth Euromicro Workshop On Parallel and Distributed Processing, 1996. PDP '96, pp. 274-281.
Vallet et al (“Personalized Content Retrieval in Context Using Ontological Knowledge” Mar. 2007) (Year: 2007).
Ware et al, “Locating and Identifying Components in a Robot's Workspace using a Hybrid Computer Architecture” Proceedings of the 1995 IEEE International Symposium on Intelligent Control, Aug. 27-29, 1995, pp. 139-144.
Whitby-Strevens, “The transputer”, 1985 IEEE, pp. 292-300.
Wilk et al., “The Potential of Social-Aware Multimedia Prefetching on Mobile Devices”, International Conference and Workshops on networked Systems (NetSys), 2015, pp. 1-5.
Lin et al., “Summarization of Large Scale Social Network Activity”, DOI: 10.1109/ICASSP.2009.4960375, Apr. 2009, pp. 3481-3484.
Santos et al., “SCORM-MPEG: an ontology of interoperable metadata for Multimedia and e-Learning”, DOI: 10.1109/SOFTCOM.2015.7314122, Nov. 2, 2015, pp. 5.
Scheper et al., “Nonlinear dynamics in neural computation”, ESANN, 14th European Symposium on Artificial Neural Networks, Jan. 2006, pp. 491-502.
Schneider et al., “A Robust Content Based Digital Signature for Image Authentication”, 3rd IEEE International Conference on Image Processing, Sep. 19, 2006, pp. 227-230.
Semizarov et al.,“Specificity of short interfering RNA determined through gene expression signatures”, PNAS vol. 100 (11), May 27, 2003, pp. 6347-6352.
Sheng Hua et al., “Robust video signature based on ordinal measure”, ICIP '04. 2004 International Conference on Image Processing, Oct. 2004, pp. 685-688.
Stolberg et al., “HiBRID-SoC: A multi-core SoC architecture for multimedia signal processing. VLSI Signal Processing”, Journal of VLSI Signal Processing vol. 41(1), Aug. 2005, pp. 9-20.
Theodoropoulos et al., “Simulating asynchronous architectures on transputer networks”, 4th Euromicro Workshop on Parallel and Distributed Processing, Braga, Portugal, 1996, pp. 274-281.
Vailaya et al., “Content-Based Hierarchical Classification of Vacation Images”, International Conference on Multimedia Computing and Systems, vol. 1, DOI-10.1109/MMCS.1999.779255, Jul. 1999, pp. 518-523.
Verstraeten et al., “Isolated word recognition with the Liquid State Machine: A case study”, Information Processing Letters, vol. 95(6), Sep. 2005, pp. 521-528.
Vallet et al.,“Personalized Content Retrieval in Context Using Ontological Knowledge”, in IEEE Transactions on Circuits and Systems for Video Technology, vol. 17, No. 3, Mar. 2007, pp. 336-346.
Wang et al., “Classifying objectionable websites based on image content” Interactive Distributed Multimedia Systems and Telecommunication Services, vol. 1483, 1998, pp. 113-124.
Wang et al., “A Signature for Content-Based Image Retrieval Using a Geometrical Transform”, 6th ACM International Conference on Multimedia, Multimedia 1998, pp. 229-234.
Ware et al., “Locating and identifying components in a robot's workspace using a hybrid computer architecture”, 10th International Symposium on Intelligent Control, 1995, pp. 139-144.
Li et al. “Exploring Visual and Motion Saliency for Automatic Video Object Extraction”, in IEEE Transactions on Image Processing, vol. 22, No. 7, Jul. 2013, pp. 2600-2610.
Colin Whitby-Strevens, “The transputer”, 12th annual international symposium on Computer architecture (ISCA), IEEE Computer Society Press, Jun. 1985, pp. 292-300.
Wilk et al., “The potential of social-aware multimedia prefetching on mobile devices”, International Conference and Workshops on Networked Systems (NetSys 2015) Mar. 2015, p. 1.
Andrew William Hogue, “Tree pattern inference and matching for wrapper induction on the World Wide Web”, May 13, 2014, pp. 106.
Liu et al. “Instant Mobile Video Search With Layered Audio-Video Indexing and Progressive Transmission”, IEEE Transactions on Multimedia 16(Dec. 8, 2014, pp. 2242-2255.
Raichelgauz et al., “Natural Signal Classification by Neural Cliques and Phase-Locked Attractors”, International Conference of the IEEE Engineering in Medicine and Biology Society, 2006, pp. 6693-6697.
Lin et al., “Robust digital signature for multimedia authentication”, IEEE Circuits and Systems Magazine, vol. 3, No. 4, 2003, pp. 23-26.
Zang et al., “A New Multimedia Message Customizing Framework for mobile Devices”, IEEE International Conference on Multimedia and Expo, 2007, pp. 1043-1046.
Zhou et al., “Ensembling neural networks: Many could be better than all”, Artificial Intelligence, vol. 137, 2002, pp. 239-263.
Zhou et al., “Medical diagnosis with C4.5 rule preceded by artificial neural network ensemble”, IEEE Transactions on Information Technology in Biomedicine, vol. 7, No. 1, Mar. 2003, pp. 37-42.
Zhu et al., “Technology-Assisted Dietary Assessment”, SPIE. 6814. 681411, 2008, p. 1.
Zou et al., “A content-based image authentication system with lossless data hiding”, International Conference on Multimedia and Expo. ICME, 2003, pp. II(213)-II(216).
Provisional Applications (2)
Number Date Country
62827112 Mar 2019 US
62827121 Mar 2019 US