The invention relates to a method for producing linear detonating shaped cutting charges and to novel linear detonating shaped cutting charges which can be obtained by said method.
A linear detonating shaped cutting charge, that can be used for linear perforation (of a material), comprises an elongate mass of explosive material having, over its length, a cavity in the form of an inverted V-shaped groove, said mass being surrounded by a thin-walled metal coating (metal sheath). The detonation produces a planar metal blade projected at high speed over the length of the groove, said blade being suitable for the linear perforation (of said material). According to one known method for producing such linear detonating shaped charges of this type, for example reviewed in the introduction to the Patent Application FR 2 590 661, a (cylindrical) metal tube, generally made of lead because of the ductility of this material, is filled with explosive granules, then said filled tube is passed through a series of rollers intended to shape it in the form of a bar, having a chevron-shaped cross section. The height of the groove of the chevron is intended to space the charge apart from the work surface, thus allowing for the development of the metal blade when the shaped charge operates.
The linear detonating shaped cutting or perforation charges that are thus produced often have a non-uniform coating thickness and/or microcracking in their coating induced by the significant sectional deformation imposed on the tube over a long length, and the result thereof is a lack of uniformity in the cutting power, and therefore variations in the perforation effectiveness. Moreover, the compression and the deformation of the explosive charge, during the shaping of the tube filled with said charge, can lead to variations in the density of said charge.
The replacement of the lead by less toxic metals, such as copper or molybdenum, metals that are less ductile, make the implementation of this method even more difficult. Also, the significant mechanical forces needed for the deformation of tubes made of these materials that are not very ductile are incompatible with a method implemented with pyrotechnic substances.
Those skilled in the art are therefore seeking a method for producing linear detonating shaped cutting charges that is simple to implement, suited to metals (forming the tubes) with lower ductility than lead and that makes it possible to limit the geometrical defects of the charges produced.
According to its first object, the present invention therefore relates to a method for obtaining a linear detonating shaped cutting charge; said charge comprising, conventionally, a cylindrical metal sheath with chevron-shaped cross section enclosing an explosive energetic material. Characteristically, said method comprises:
It is understood that the deformation is implemented, to obtain the effect sought (elimination of the voids), on a sealed filled internal volume. To this end, any means, of plug type, is involved for blocking the distal ends of the filled container. This blocking advantageously ensures that the material filling the internal volume of the container is maintained under longitudinal compression.
Characteristically, in the context of the implementation of the method of the invention, a container (precursor of the sheath of the final charge) is preformed (to the desired form: conventional shape) before its filling (it is preformed hollow, empty) and, once filled and blocked (the filling involved is intended to occupy all the internal volume of the container), it is weakly deformed (in its part not directly involved in the operation of the final charge, i.e. on its outer walls; its inner walls (those of the inverted V-shaped groove) remaining intact) for its perfect adaptation to the material with which it is filled (in fact, container and content are both weakly deformed in order to perfectly follow the shape of each other, without deformation of the inverted V-shaped groove). The expected linear detonating shaped cutting charge is thus obtained with a cylindrical metal sheath with chevron-shaped cross section enclosing an explosive energetic material. The material filling the internal volume of the container at the time of the compression (filling material, which may have been transformed in situ (see below)) is a compression-deformable material.
According to an advantageous variant implementation, the method of the invention comprises:
Whatever the exact variant implementation of the method of the invention, on the one hand, the container (empty), precursor of the sheath of the final linear detonating shaped cutting charge has to be obtained and, on the other hand, the filling material for said container, precursor of the explosive energetic material of said charge, has to be available.
With regard to said container, it is advantageously obtained by the shaping of a (hollow) metal tube, notably of such a tube with circular or elliptical section, advantageously of such a tube with circular section. Such a shaping operation is known per se.
Said container can notably be made of copper, molybdenum or lead. It is advantageously made of copper.
With regard to the filling material, it is a compression-deformable explosive energetic charge (required to form—once compressed longitudinally and transversely—the explosive energetic material of the final shaped charge) or a precursor of such a charge (required to be first treated in situ (said treatment in the container generally consisting in a heat treatment or similar to ensure the cross-linking of said precursor) to form such a charge, said charge therefore itself being required to form—once compressed longitudinally and transversely—the explosive energetic material of the final shaped charge).
In a nonlimiting manner, it can be indicated here that the filling material can notably consist:
The nature of such filling materials and the handling of these materials in the method of the invention are specified hereinbelow.
The filling of the container (preformed) can therefore be implemented by the introduction of at least one explosive bar into the internal volume of said container. Said at least one bar has an outline fitted as close as possible to that delimiting the internal volume of the container. It is understood that the mechanical play between said at least one explosive bar and the interior of said container (=the void to be canceled by the operation of compression deformation of a portion of the outer walls of the container) has to be as small as possible, in order to limit the deformation by compression of said container necessary for the mechanical cohesion between said container and said bar, while allowing the introduction of said bar into said container. The acceptable mechanical play is obviously related to the dimensions of said container. Typically, for a container that fits into a rectangle 15 mm high and 20 mm wide (speaking here specifically about the section of said container), the mechanical play between the outlines of said at least one bar and of said container is approximately 0.1 mm.
In the context of this variant implementation of the method of the invention, n bars are generally successively introduced into the container (preformed) for its filling. In practice, since it is difficult to produce long explosive bars and to then introduce them into a container, as a general rule, when said container is very long (>50 mm), a number of bars of shorter lengths, compared to that of said container, are introduced in succession to form a stack inside said container. They are then slightly compressed together, longitudinally, by means of plugs. The bars typically have a length of 10 or so millimeters for a sheath 1 to 2 m long.
With reference to the involvement of such bars, the following can also be specified, in a nonlimiting manner.
Such bars can notably consist:
of bars made up of powder-form charges or compressed granules (without binder; the charges concerned being, for example, charges of RDX, HMX, CL20 or pentrite),
bars made up of a wax explosive (notably chosen from the hexowaxes, pentowaxes and octowaxes), or
explosive bars with plastic binder (for example of RDX/ammonium perchlorate/polyurethane binder type, obtained by molding).
The filling of the container can also be implemented by the introduction of a powder-form charge, with or without binder (of wax type, for example), followed by a longitudinal compression of said powder-form charge introduced. It will be seen that it is highly advantageous to “pack” said powder-form charge introduced to optimize the filling of the container (to minimize the void to be canceled by the operation of deformation by compression of a portion of the outer walls of the container). The explosive concerned can perfectly well be of the same nature as that present in the bars described above (RDX, HMX, etc.).
The filling of the container can also be implemented by casting an explosive with plastic binder, said casting being followed by a heat treatment ensuring the in situ cross-linking (in the volume of the container) of said binder. The container is here filled with a precursor of a compression-deformable explosive energetic charge, intended to form the explosive energetic material of the final shaped charge. The energetic charge is obtained from said precursor with contraction, whence the void to be canceled in the operation of deformation by compression of a portion of the outer walls of the container.
Those skilled in the art will understand perfectly well that the nature of the filling material is not limited by the details given above, but that any (explosive) filling material, which can be handled for the filling step and then compressed, per se or after transformation, for the cancelation of the voids within the filled container, will be suitable.
The blocking of the distal ends of the preformed container is generally performed in two stages, by fitting a first plug at a first end, before filling, then fitting a second plug at the second end, after filling. However, with certain types of filling materials, the fitting of the two plugs after filling is not precluded.
The plugs are advantageously fitted with an adhesion means, such as mastic. They can then be positioned in a perfectly stable manner, while ensuring a perfect seal. Said plugs, in any case, contribute to the rigidity of the assembly.
Two types of plugs can notably be used. Plugs, not retained at the end of the process, are likely to be involved as simple production auxiliaries of the desired charges. It is in fact possible, after the deformation by compression of the filled preformed container blocked at both its ends with such plugs, to cut said two blocked ends to create end faces, visible, clean, with exposed explosive. Such faces are generally then coated with a protective lacquer. Other plugs, of more complex structure, suitable for receiving a detonator, a transmission line piece or a detonation relay, can be used in the method of the invention and retained at the distal ends of the final charge obtained.
The deformation (or forming) of the blocked filled container can be performed according to different methods and notably by rolling said filled container between rollers or by passing said filled container through a die or a linear press.
In light of the effect sought and of the nature of the final product sought, it is understood that the deformation involved is a weak deformation, that the compression involved is a compression of weak intensity. The aim is to perfect the filling of the container (by weakly limiting its internal volume by weak deformation (of a portion) of its outer walls, without affecting the part of said container, mainly responsible for the technical effect (pyrotechnic effect) sought: the inverted V-shaped groove). Advantageously, the perimeter of the section of the (filled) container is not modified by the compression (forming) operation. The internal stresses are thus minimized. Very advantageously, a convex portion (having a radius of curvature of a given value) is deformed into a concave portion (exhibiting a radius of curvature of the same value).
Those skilled in the art have already understood all the benefits of the method of the invention. The weak deformation by compression of the container, preformed to the suitable shape and filled, makes it possible to limit the mechanical stresses imposed on said container and thus avoid the risks of the appearance of microcracks, and does so without generating any significant longitudinal deformation. Moreover, the method of the invention makes it possible to best control the wall thicknesses of the sheath of the final shaped charge. The material contained in the container (like the at least one explosive bar detailed above) undergoes only a weak deformation, generating weak axial and longitudinal stresses. These weak stresses ensure a perfect contact between said material and the internal surface of the deformed container (=the sheath of the final shaped charge) and between said material and the end plugs, as well as between the various bars when a number of bars are involved. It can also be stated that, in a context of use of such bars, the weak deformation of said bars also ensures that the linear density of the bars in the final shaped charge is almost identical to that of the initial bars.
According to its second object, the present invention relates to a linear detonating shaped cutting charge, comprising, conventionally, a cylindrical metal sheath with chevron-shaped cross section enclosing an explosive energetic material. Said charge is novel in that it can be obtained by the original method, as described above (forming the first object of the present invention). Said charge is novel in that it bears the marks of such a production method. Its sheath exhibits, over the entire length of each of its outer faces, facing its inner faces delimiting the inverted V-shaped groove, a concavity. Said concavity extends longitudinally over the portion of said outer faces facing said inner faces. This concavity is the mark, the signature, of the compression deformation step.
The charges of the invention, obtained by the above method implemented from a hollow tube (of circular section), generally have their sheath, which has a dome prolonged by its outer walls, with concavity, bent back to form the inverted V-shaped groove delimited by its inner walls.
The invention, in its product and method aspects, is illustrated, in a nonlimiting manner, in the appended figures and by the example below.
In the context of the example, values for these dimensional characteristics of the container 10 (precursor of a sheath 101 of a charge 100 of the invention (see
Those skilled in the art will easily see that containers having different forms from that represented in
The implementation of the compression, for deformation of a portion of the outer walls 10a and 10b of the filled container 10 (of the n explosive bars 11a), is schematically represented by the black arrows in
Said example is described with reference to the appended
A container, as shown in
A first plug (made of epoxy resin) is positioned (stably, with a mastic) at one of the ends of this preformed container. It penetrates into said container to a depth of 25 mm.
Said container is filled, over its length, with 130 explosive bars, as shown in
Another plug (of the same type as the first) is then positioned (in the same way), in the remaining volume, at the other end of the filled preformed container, so as to slightly compress the stack of bars in said preformed container. A tight contact is thus assured between each bar and its neighbors. A tight contact is also thus assured between the end plugs and the bars situated at the end of the stack (at the distal ends of the container). The filled container is then made perfectly rigid.
The compression of the outer walls of the preformed, filled and plugged container, more specifically of a portion of said walls (in accordance with
The plug ends are cut and, finally, the shaped charge of the invention obtained (as represented in
Number | Date | Country | Kind |
---|---|---|---|
1158448 | Sep 2011 | FR | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/FR2012/052064 | 9/14/2012 | WO | 00 | 9/17/2014 |