METHOD FOR OLEFIN PRODUCTION FROM BUTANES USING A CATALYST

Abstract
Systems and processes for producing one or more olefins are provided. In one or more embodiments, a feed stream containing butane can be dehydrogenated to provide a first product containing butene. At least a portion of the first product can bypass an existing etherification reactor used for converting isobutylene to MTBE. At least a portion of the first product can be cracked using a catalytic cracker at conditions favoring the conversion of the first product to propylene to provide a second product containing propylene, ethylene, and butane. In one or more embodiments, a catalyst consisting of essentially a zeolite favoring the production of propylene can be used in the catalytic cracker.
Description
BACKGROUND

1. Field


The present embodiments generally relate to systems and processes for producing olefins from hydrocarbon mixtures containing one or more butanes.


2. Description of the Related Art


Methyl tert-butyl ether (“MTBE”) is manufactured by the chemical reaction of methanol and isobutene for primary use in gasoline. MTBE is a common component in reformulated fuels developed to reduce smog and meet Clean Air Act goals. MTBE has been produced in very large quantities for use as a gasoline additive since about 1979.


However, MTBE production has decreased as various jurisdictions restricted or banned its use. By late 2006 most American gasoline retailers stopped using MTBE as an oxygenate. Accordingly, domestic production has continued to decline. As a result, MTBE manufacturers are left holding useless feedstocks and manufacturing assets.


There is a need, therefore, for reallocating feedstocks and manufacturing assets previously allocated to the manufacture of MTBE, thereby providing an economic benefit to MTBE manufacturers.





BRIEF DESCRIPTION OF THE DRAWINGS

So that the manner in which the above recited features of the present invention can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.



FIG. 1 depicts an illustrative system for producing a C4-containing feedstock according to one or more embodiments described.



FIG. 2 depicts an illustrative system for producing one or more olefins according to one or more embodiments described.





DETAILED DESCRIPTION

A detailed description will now be provided. Each of the appended claims defines a separate invention, which for infringement purposes is recognized as including equivalents to the various elements or limitations specified in the claims. Depending on the context, all references below to the “invention” may in some cases refer to certain specific embodiments only. In other cases it will be recognized that references to the “invention” will refer to subject matter recited in one or more, but not necessarily all, of the claims. Each of the inventions will now be described in greater detail below, including specific embodiments, versions and examples, but the inventions are not limited to these embodiments, versions or examples, which are included to enable a person having ordinary skill in the art to make and use the inventions, when the information in this patent is combined with available information and technology.


Systems and processes for producing a C4-containing feedstock and/or one or more olefins are provided. In one or more embodiments, a hydrocarbon mixture containing one or more C4 compounds can be a feedstock to produce one or more olefins including ethylene and propylene. In one or more embodiments, butane intermediates from an existing methyl tert-butyl ether (“MTBE”) process can be used as the feedstock. For example, an existing MTBE system can be retrofitted or converted to provide the feedstock for producing the one or more olefins.


In at least one specific embodiment, a feed stream containing butane can be dehydrogenated to provide a first product containing butene. At least a portion of the first product can bypass an existing etherification reactor used for converting isobutylene to MTBE. At least a portion of the first product can be cracked using a catalytic cracker at conditions favoring the conversion of the first product to propylene to provide a second product containing propylene, ethylene, and butane. In one or more embodiments, a catalyst consisting of essentially a zeolite favoring the production of propylene can be used in the catalytic cracker.


The term “light hydrocarbon” as used herein refers a hydrocarbon having a carbon number less than or equal to 4.


The term “naphtha” as used herein refers to a mixture of one or more hydrocarbons, where less than 10% wt of the mixture vaporizes at a temperature less than 175° C., and more than 95% wt of the mixture vaporizes at a temperature 1 less than 240° C., as determined by ASTM standard method D86.


The term “heavy naphtha” as used herein refers to a fraction with a boiling temperature from about 166° C. to about 211° C.


The term “BTX” as used herein refers to a hydrocarbon mixture having at least benzene, toluene, and xylene, mixtures thereof or combinations thereof.



FIG. 1 depicts an illustrative system for producing a C4-containing feedstock according to one or more embodiments. In one or more embodiments, a feedstock via line 102 can be selectively separated using one or more separators 105, 110, 115 and/or 120, and dehydrogenated using one or more dehydrogenation reactors 130, to provide a first product in line 132. A first portion of the first product can be used to produce one or more olefins via line 178, while a second portion of the first product can be further processed using one or more columns 135, 145, and 150 to provide a purified isobutenes and isobutanes via line 152. In one or more embodiments, a first portion of the isobutenes and isobutanes via line 152 can form a feedstock for olefin production via line 178, while a second portion of the isobutenes and isobutanes via line 152 can form a feedstock for MTBE production using one or more etherification reactors 155 and pressure columns 160, 165.


In one or more embodiments, the feedstock via line 102 can consist essentially of light hydrocarbons. In one or more embodiments, the feedstock can include, but is not limited to, one or more C4-containing compounds such as butane (i.e. “n-butane”) and isobutane. In one or more embodiments, the feedstock can be a refinery off-gas resulting from the distillation of crude oil. In one or more embodiments, the feedstock via line 102 can include from about 1% vol to 5% vol methane, from about 1% vol to about 10% vol ethane, from about 1% vol to about 30% vol propane, from about 1% vol to about 35% vol butane, and from about 1% vol to about 20% vol heavier hydrocarbons. In one or more embodiments, the feedstock via line 102 can be introduced to the one or more rectifier columns 105 at a temperature of about 25° C. to about 200° C.


In one or more embodiments, the C4 and heavier hydrocarbons via line 108 can include from about 50% vol to about 95% vol C4, from about 1% vol to about 25% vol C5, from about 1% vol to about 10% vol C6, and from about 1% vol to about 5% vol C7 and/or heavier hydrocarbons. In one or more embodiments, the C4 and heavier hydrocarbons via line 108 can include at least about 25% vol to about 95% vol C4.


The feedstock, via line 102, can be introduced to the one or more rectifier columns 105 and selectively separated therein to provide an overhead containing C1-C3 hydrocarbons via line 106 and a bottoms containing C4 and heavier hydrocarbons via line 108. In one or more embodiments, at least a portion of the C1-C3 hydrocarbons in the overhead 106 can be directed to a methanol unit 170 to provide methanol via line 172. Although not shown in FIG. 1, at least a portion of the C1-C3 hydrocarbons in the overhead 106 can be used as a feedstock for reforming, and/or fractionated to provide fungible products such as methane, ethane and propane. In addition to C1-C3 hydrocarbons, the overhead via line 106 can contain at least 1% vol methane. In one or more embodiments, the overhead via line 106 can have as much as 10% vol methane. The overhead via line 106 can include at least 5% vol propane. In one or more embodiments, the overhead via line 106 can include from about 1% vol to 10% vol methane, from about 5% vol to 70% vol ethane, and from about 5% vol to 70% vol propane.


The one or more rectifier columns 105 can be any system or device or combination of systems and/or devices suitable for separating the feedstock via line 102 into an overhead containing C1-C3 hydrocarbons via line 106 and a bottoms containing C4 and heavier hydrocarbons via line 108. In one or more embodiments, the one or more rectifier columns 105 can have packing media to provide surface area to facilitate separation of the feedstock via line 102. For example, the packing media can include rings, saddles, balls, irregular sheets, tubes, spirals, trays, plates, and/or baffles. In one or more embodiments, the one or more rectifier columns 105 can operate at pressures ranging from about 100 kPa to about 2000 kPa, about 1000 kPa to about 2000 kPa, about 200 kPa to about 1000 kPa, or about 100 kPa to about 200 kPa. Each rectifier column 105 can operate at temperatures ranging from about −10° C. to about 300° C., about 100° C. to about 300° C., about 20° C. to about 100° C., or about −10° C. to about 50° C.


In one or more embodiments, the C4 and heavier hydrocarbons via line 108 can be introduced to one or more de-butanizing columns 110 and selectively separated therein to provide an overhead containing C4 hydrocarbons via line 112 and a bottoms containing C5 and heavier hydrocarbons via line 114. In one or more embodiments, the overhead 112 can include butane and/or isobutane. In one or more embodiments, the overhead 112 can include at least about 30% vol, at least about 40% vol, at least about 50% vol, at least about 60% vol, or at least about 70% vol butane. In one or more embodiments, the overhead 112 can include at least about 30% vol to 70% vol butane and at least about 70% vol to 30% vol isobutane.


The C5 and heavier hydrocarbons via line 114 can exit the de-butanizing column 110 at a temperature of about 25° C. to about 200° C. depending on the pressure maintained within the column 110. For example, the pressure can be from about 50 kPa to about 1500 kPa. In one or more embodiments, the bottoms 114 can include at least about 70% wt, 80% wt, or 90% wt C5, up to about 30% wt C6, and up to about 10% wt C7 and heavier hydrocarbons. Although not shown in FIG. 1, the bottoms 114 can be used as a feed for one or more cracking units including, but not limited to, thermal cracking, steam pyrolytic cracking, hydrocracking, fluid catalytic cracking or any series or parallel combination thereof.


The de-butanizing column 110 can be any device suitable for selectively separating C4 and heavier hydrocarbons. In one or more embodiments, the de-butanizing column 110 can include packing media to facilitate separation of the hydrocarbons. For example, the de-butanizing column 110 can include rings, saddles, balls, irregular sheets, tubes, spirals, trays, plates, and/or baffles.


In one or more embodiments, the overhead 112 can be introduced to one or more de-isobutanizing columns 115 and selectively separated therein to provide an overhead line 116 that contains primarily isobutane and a bottoms 118 that contains primarily butane. In one or more embodiments, the overhead 116 can contain about 70% vol or more, about 80% vol or more, about 90% vol or more, or about 95% vol or more isobutane. In one or more embodiments, the overhead 116 can include from about 5% vol to about 30% vol butane and from about 70% vol to about 99% vol isobutane. The temperature of the overhead 116 can be about 10° C. to about 150° C., and the pressure can be from about 50 kPa to about 1500 kPa.


In one or more embodiments, the bottoms 118 can include about 70% vol to about 99% vol butane. For example, the bottoms 118 can include from about 60% vol to about 90% vol; about 60% vol to about 70% vol; about 70% vol to about 80% vol; or about 80% vol to about 90% vol butane. The bottoms 118 can also include about 5% vol to about 30% vol, about 5% vol to about 10% vol, about 10% vol to about 20% vol, or about 20% vol to about 30% vol isobutane. The temperature of the bottoms 118 can be about 10° C. to about 150° C., and the pressure can be about 50 kPa to about 1500 kPa.


The de-isobutanizing column 115 can be any device, system or combination of devices and/or systems suitable for selectively separating the C4 hydrocarbons via line 112 into an overhead containing primarily isobutane and a bottoms containing primarily butane. In one or more embodiments, the de-isobutanizing column 115 can include packing media to facilitate separation of the hydrocarbons. For example, the de-isobutanizing column 115 can include rings, saddles, balls, irregular sheets, tubes, spirals, trays, plates, and/or baffles. In one or more embodiments, the de-isobutanizing column 115 can have at least 10 to 25, 20 to 35, 30 to 45, 40 to 55, 50 to 65, 60 to 75, 70 to 85, 80 to 95, or 90 to 100 plates. The de-isobutanizing column 115 can operate at temperatures from about 60° C. to about 90° C., from about 65° C. to about 85° C., or from about 70° C. to about 80° C. In one or more embodiments, the de-isobutanizing column 115 can operate at pressures from about 800 kPa to about 1400 kPa, from about 800 kPa to about 1300 kPa, from about 800 kPa to about 1200 kPa, or from about 900 kPa to about 1200 kPa.


In one or more embodiments, the overhead 118 can be introduced to one or more reactors 120 to isomerize butane to isobutane. In one or more embodiments, the bottoms 122 that contains butane and some amount of non-isomerized isobutane can have an isobutane to total butanes ratio ranging from 0.45 to 0.75, depending upon the operating temperature of the one or more isomerization reactors 120. The bottoms 122 can be recycled to the de-isobutanizing column 115 for further separation. Although not shown, the bottoms 122 can be selectively separated using a fractionation column to remove any lighter hydrocarbons, thereby increasing the C4 concentration, and the separated C4 hydrocarbons can be returned to the de-isobutanizing column 115 for further processing.


The one or more isomerization reactors 120 can include any device, system or combination of systems and/or devices suitable for converting at least a portion of the butane to isobutane. In one or more embodiments, each isomerization reactor 120 can convert about 5 mol % to 40 mol %, about 5 mol % to 15 mol %, about 10 mol % to 20 mol %, about 15 mol % to 25 mol %, about 20 mol % to 30 mol %, about 25 mol % to 35 mol %, or about 30 mol % to 40 mol % of the butane in the overhead 118 to isobutane. In one or more embodiments, the isomerization reaction can occur at a pressure of about 1000 kPa to about 3800 kPa, about 1200 kPa to about 3400 kPa, or about 1400 kPa to about 2800 kPa. The isomerization reaction can occur at a temperature of about 150° C. to about 205° C., about 150° C. to about 200° C., about 150° C. to about 195° C., about 150° C. to about 190° C., about 150° C. to about 185° C., or about 150° C. to about 180° C.


In one or more embodiments, the temperature of the isobutane via line 116 can be increased using one or more heat exchangers 125 to provide warmer isobutane (“feed”) via line 126. In one or more embodiments, the isobutane via line 126 can be heated to the temperature necessary for dehydrogenation of the isobutane, such as about 500° C. to about 650° C. The heat exchanger 125 can be a shell and tube type, plate type, fired heater, regenerative type heat exchanger, air heater, or any combination thereof.


In one or more embodiments, the feed via line 126 can be introduced to one or more dehydrogenation reactors 130. In one or more embodiments, the isobutane via line 126 can be combined with any other available isobutanes, such as those available from the MTBE production unit via line 162, to provide a dehydrogenation feed via line 128. In one or more embodiments, the dehydrogenation feed via line 128 can include isobutane, butane, mixtures thereof, derivatives thereof, or combinations thereof. In one or more embodiments, the dehydrogenation feed via line 128 can include one or more C4 compounds with varying ratios of isobutane and butane. In one or more embodiments, the dehydrogenation feed via line 128 can have an isobutane concentration ranging from about 50% vol, to about 99% vol; about 60% vol to about 90% vol; or from about 70% vol to about 80% vol. In one or more embodiments, the dehydrogenation feed via line 128 can include about 40% wt to about 90% wt olefinic compounds having 4 or more carbon atoms and about 5% wt to about 60% wt paraffinic compounds having 4 or more carbon atoms. In one or more embodiments, the temperature of the dehydrogenation feed via line 128 can be from about 500° C. to about 650° C. The pressure of the dehydrogenation feed via line 128 can be from about 10 kPa to about 300 kPa.


The dehydrogenation feed via line 128 can be equally or unequally apportioned to the one or more dehydrogenation reactors 130 (two are shown) where at least a portion of the isobutane therein can be converted to isobutene, providing a first product via line 132. In one or more embodiments, the first product can include at least 90% wt C4-C10 hydrocarbons. In one or more embodiments, the first product can include of from about 5% wt to about 90% wt C4, from about 5% wt to about 90% wt C5, from about 5% wt to about 90% wt C6, and from about 5% wt to about 90% wt C7 and heavier hydrocarbons. The C4 hydrocarbons can include isobutene, isobutane, butane, butene, derivatives thereof or combinations thereof. In one or more embodiments, the first product via line 132 can have an isobutane to isobutene molar ratio ranging from about 1:1 to about 1.5:1. The temperature of the first product can be from about 10° C. to about 100° C. lower than the temperature of the dehydrogenation feed via line 128, as the dehydrogenation reaction is endothermic. In one or more embodiments, the first product can include about 90% or more wt C4. In one or more embodiments, the first product can include about 90% wt or more C4-C10 olefins. In one or more embodiments, the first product can include about 40% wt to about 95% wt olefins, and about 5% wt to about 60% wt paraffins.


The dehydrogenation reactions in the one or more dehydrogenation reactors 130 can also produce hydrogen and other non-condensable secondary products which can be present in the first product via line 132. The non-condensable secondary products can include, but are not limited to, C1-C3 hydrocarbons. In one or more embodiments, the first product via line 132 can have a molar ratio of hydrogen to total hydrocarbons ranging from about 0.5:1 to about 2.0:1.


The one or more dehydrogenation reactors 130 can be any system or device or combination of systems and/or devices suitable for dehydrogenating alkanes. In one or more embodiments, the dehydrogenation reactors 130 can employ a thermal process, catalytic process, or any combination thereof, either in series or parallel. In one or more embodiments, the one or more dehydrogenation reactors 130 can operate at pressures ranging from less than 10 kPa to about 300 kPa. Each dehydrogenation reactor 130 can operate at temperatures from about 538° C. to about 649° C., from about 538° C. to about 559° C., from about 538° C. to about 579° C., from about 538° C. to about 599° C., from about 538° C. to about 619° C., or from about 538° C. to about 639° C.


The first product via line 132 can be used as a feedstock via line 178 for subsequent processing and/or further purification. In one or more embodiments, about 5% wt to 25% wt, about 15% wt to 45% wt, about 25% wt to 60% wt, or about 40% wt to 70% wt of the first product via line 132 can be used as feedstock via line 178 and the balance, if any, can be further processed to provide purified isobutenes and isobutanes via line 152. In one or more embodiments, about 25% wt to 55% wt, about 45% wt to 70% wt, about 55% wt to 85% wt, about 65% wt to 90% wt, or about 75% wt to 100% wt of the first product can be used as feedstock via line 178 and the balance, if any, can be further processed to provide purified isobutenes and isobutanes via line 152.


In one or more embodiments, all or any portion of the first product via line 132 can be further processed using one or more quench columns 135, absorption columns 145, and/or desorbing columns 150 to provide purified isobutenes and isobutanes via line 152. In one or more embodiments, the first product via line 132 can be introduced to one or more quench columns 135 where the temperature of the first product can be reduced by direct contact with a heat transfer fluid, such as water, to reduce or stop the rate of dehydrogenation. The quench column 135 can be any device, system or combination of systems and/or devices suitable for reducing the temperature of a hydrocarbon to provide a cooled C4 mixture via line 136. In one or more embodiments, the quench column 135 can include packing media to provide additional surface area to facilitate thermal contact between the first product via line 132 and the heat transfer medium, such as water. Each quench column 135 can include one or more rings, saddles, balls, irregular sheets, tubes, spirals, trays, and/or baffles. In one or more embodiments, the cooled C4 mixture via line 136 can have a temperature ranging from about 10° C. to about 500° C.; about 50° C. to about, 400° C.; or about 100° C. to about 300° C.


The cooled C4 mixture can be compressed using one or more compressors 140 to provide a compressed C4 mixture via line 142. The compressor 140 can include any device, system or combination of systems and/or devices suitable for compressing a gas, liquid, and/or multi-phase fluid to provide the compressed C4 mixture. For example, the compressor 140 can include one or more reciprocating, rotary, axial flow, centrifugal, diagonal or mixed-flow, scroll, or diaphragm compressors or any combination thereof. In one or more embodiments, the compressor 140 can have multiple compressor stages. In one or more embodiments, the compressor 140 can have intercooling between one or more compressor stages. In one or more embodiments, the compressor 140 can compress the cooled C4 mixture via line 136 to a pressure of about 800 kPa to about 1500 kPa. In one or more embodiments, the temperature of the compressed C4 mixture can be from about 10° C. to about 200° C.


In one or more embodiments, the compressed C4 mixture via line 142 can be separated from hydrogen and the other non-condensables within one or more absorption columns 145. The absorption column 145 can include packing media to facilitate gas liquid separation and physical contact between the compressed C4 mixture and a solvent. The packing media can include saddles, balls, irregular sheets, tubes, spirals, trays, and baffles. The hydrogen and non-condensables can exit the absorption column 145 via line 146. The C4 compounds and any heavier hydrocarbons, if present, can exit with the solvent via bottoms 148. In one or more embodiments, the bottoms exiting the absorption column 145 can include from about 10% vol to about 60% vol C4 compounds. The balance can contain solvent and heavier hydrocarbons, if present. In one or more embodiments, the column 145 can be operated at a temperature of from about 10° C. to about 200° C. at pressures ranging from about 200 kPa to about 2000 kPa.


The solvent mixture via line 148 can be introduced to the one or more desorbing columns 150 where at least a portion of the isobutenes and isobutanes can be evolved by heating the solvent mixture to provide isobutenes and isobutanes via line 152 and recovered solvent via line 154. The solvent can be recycled to the absorption column 145 via line 154.


The desorbing column 150 can be any device, system or combination of systems and/or devices suitable for selectively separating dissolved isobutenes and isobutanes from the solvent. In one or more embodiments, the desorbing column 150 can include packing media to facilitate the selective separation. For example, each desorbing column 150 can include one or more saddles, balls, irregular sheets, tubes, spirals, trays, and/or baffles. In one or more embodiments, the isobutene concentration via line 152 can be at least 15% vol, 25% vol, 35% vol, 45% vol, 55% vol, or 65% vol. In one or more embodiments, the isobutane concentration via line 152 can be at least 30% vol, 40% vol, 50% vol, 60% vol, 70% vol, or 80% vol.


In one or more embodiments, all or any portion of the isobutenes and isobutanes via line 152 can be combined with methanol and etherified to provide MTBE product. In one or more embodiments, all or any portion of the isobutenes and isobutanes via line 152 can bypass the MTBE step and combined with the first product via line 132 to provide the feedstock via line 178. In one or more embodiments, a portion ranging from about 1% wt, 10% wt, 25% wt, 35% wt, or 50% wt to about 60% wt, 70% wt, 80% wt, 95% wt, or 100% wt of the isobutenes and isobutanes via line 152 can be directed to the feedstock via line 178 and the balance to the MTBE unit. In one or more embodiments, a portion ranging from about 40% wt, 50% wt, or 60% wt to about 90% wt, 95% wt, or 99% wt of the isobutenes and isobutanes via line 152 can be directed to the feedstock via line 178 and the balance to the MTBE unit. In one or more embodiments, all of the isobutenes and isobutanes via line 152 can be directed to the feedstock via line 178, thereby completely bypassing the MTBE unit.


In one or more embodiments, the MTBE unit can include one or more etherification reactors 155 and two or more pressure columns 160, 165. One or more methanol units 170, using the C1-C3 hydrocarbons via line 106 as a feedstock, can be used to supply the methanol to the MTBE unit via line 172. The methanol via line 172 can have a temperature from about 10° C. to about 100° C. and a pressure from about 200 kPa to about 2000 kPa.


In one or more embodiments, at least a portion of the methanol via line 172 can be combined with the isobutenes and isobutanes via line 152 to provide an etherification feed via line 153. In one or more embodiments, the etherification feed can include a methanol-to-isobutene molar ratio of about 0.9:1 to about 1.5:1. In one or more embodiments, the etherification feed can include up to about 20% wt isobutane, up to about 20% wt C5 and heavier hydrocarbons, or about 10% wt ether. In one or more embodiments, the etherification feed can include about 80% wt, about 90% wt, or about 99% wt methanol.


The etherification feed via line 153 can be heated (not shown) and introduced to the one or more etherification reactors 155 wherein at least a portion of the methanol and isobutene can react to form raw MTBE via line 156. By “raw MTBE” it is meant that the MTBE can include one or more contaminants such as isobutane and methanol. In one or more embodiments, the raw MTBE can include at least about 80% wt, at least about 90% wt, or at least about 98% wt MTBE, up to about 20% wt methanol, and up to about 20% wt isobutane. In one or more embodiments, the raw MTBE can include from about 80% wt to about 98% wt MTBE.


The etherification reactors 155 can include a fixed catalyst bed. In one or more embodiments, the fixed catalyst bed can have a solid bed of sulfonated ion exchange resins. In one or more embodiments, the etherification reaction can take place at temperatures from about 30° C. to about 100° C., from about 30° C. to about 60° C., or from about 60° C. to about 90° C. The etherification reaction can occur at pressures from about 200 kPa to about 2400 kPa or from about 1000 kPa to about 2400 kPa. In one or more embodiments, the molar ratio of methanol to isobutene can be maintained from about 1:1 to about 2:1; from about 1.1:1 to about 1.4:1.


The raw MTBE via line 156 can be selectively separated using one or more pressure columns (“first pressure column”) 160 to provide isobutane via line 162 and a MTBE mixture via line 164. In one or more embodiments, the MTBE mixture can include MTBE and methanol. In one or more embodiments, all or any portion of the isobutane via line 162 can be recycled to the one or more dehydrogenation reactors 130. For example, about 1% wt to 35% wt, about 1% wt to 55% wt, about 1% wt to 75% wt, or about 1% wt to 100% wt of the isobutane via line 162 can be recycled to the one or more dehydrogenation reactors 130. In one or more embodiments, at least the recycled isobutane via line 162 and the warm isobutane via line 126 can be combined and introduced to the one or more dehydrogenation reactors 130 via line 128.


The first pressure column 160 can include any device or system or combination of devices and/or systems suitable for selectively separating the raw MTBE line 156 to provide isobutane via line 162 and the MTBE mixture via line 164. The first pressure column 160 can operate at temperatures ranging from about 10° C. to about 200° C. In one or more embodiments, the first pressure column 160 can operate at pressures ranging from about 200 kPa to about 2000 kPa. The first pressure column 160 can include packing media to facilitate the separation of the raw MTBE product via line 156. For example, each pressure column 160 can include saddles, balls, irregular sheets, tubes, spirals, trays, and/or baffles.


The MTBE mixture via line 164 can be selectively separated using one or more pressure columns (“second pressure column”) 165 to provide a methanol product via line 166 and an MTBE product via line 168. In one or more embodiments, the methanol product can include one or more methanol/MTBE azeotropes. The second pressure column 165 can operate at temperatures ranging from about 10° C. to about 200° C. In one or more embodiments, the second pressure column 165 can operate at pressures ranging from about 200 kPa to about 2000 kPa. In one or more embodiments, the methanol product via line 166 can include a methanol/ether azeotrope. The methanol product via line 166 can include up to 20% wt methanol and up to 20% wt water. Like the first pressure columns first pressure 160, the columns second pressure 165 can include one more saddles, balls, irregular sheets, tubes, spirals, trays, and/or baffles to facilitate separation therein.


In one or more embodiments, all or any portion of the methanol product via line 166 can be recycled to the etherification reactor 155 via line 153. For example, about 1% wt to 35% wt, about 1% wt to 55% wt, about 1% wt to 75% wt, or about 1% wt to 100% wt of the methanol product can be combined with the feed via line 153. In one or more embodiments, about 1% wt to 15% wt, about 15% wt to 35% wt, about 25% wt to 60% wt, about 35% wt to 75% wt, or about 55% wt to 99% wt of the methanol product can be recycled to the one or more etherification reactors 155.


In one or more embodiments, one or more hydrocarbons can be recycled (“first recycle”) via line 194 from one or more downstream cracking and/or fractionation systems as described hereinafter with reference to FIG. 2. In one or more embodiments, at least a portion of the hydrocarbons via line 194 can be recycled to the one or more dehydrogenation reactors 130 In one or more embodiments, at least a portion of the hydrocarbons via line 194 can be recycled to the fractionator 105 via line 102. For example, at least 35% wt to 65% wt, 45% wt to 85% wt, 55% wt to 95% wt, or 75% wt to 100% wt of the C4 hydrocarbons via line 194 can be recycled to the fractionator 105. In one or more embodiments, at least 10% wt to 99% wt, 25% wt to 99% wt, 50% wt to 99% wt, or 75% wt to 99% wt of the hydrocarbons via line 194 can be recycled to the fractionator 105 via line 102. In one or more embodiments, at least a portion of the hydrocarbons via line 194 can be recycled to the rectifier column 105 via line 102, and the balance recycled to the one or more dehydrogenation reactors 130 via line 126. For example, at least 35% wt to 65% wt, 45% wt to 85% wt, 55% wt to 95% wt, or 75% wt to 100% wt of the hydrocarbons via line 194 can be recycled to the dehydrogenation reactors 130 via line 126. In one or more embodiments, at least 10% wt to 99% wt, 25% wt to 99% wt, 50% wt to 99% wt, or 75% wt to 99% wt of the hydrocarbons via line 194 can be recycled to the dehydrogenation reactors 130 via line 126.


Although not shown in FIG. 1, at least a portion of the hydrocarbons via line 194 can be recycled to the first product via line 132. At least 1% wt to 35% wt, at least 1% wt to 45% wt, at least 1% wt to 55% wt, at least 1% wt to 75% wt, or at least 1% wt to 99% wt of the hydrocarbons via line 194 can be recycled to the first product via line 132. In one or more embodiments, the hydrocarbons via line 194 can include both butanes and isobutanes. The hydrocarbons via line 194 can include from about 20% vol to about 80% vol butane. In one or more embodiments, the hydrocarbons can include from about 5% vol to about 20% vol isobutane. In one or more embodiments, the hydrocarbons can have a temperature ranging from about 10° C. to about 200° C. In one or more embodiments, the pressure of the hydrocarbons can range from about 20 kPa to about 400 kPa.


Considering the feedstock via line 178 in more detail, the feedstock via line 178 can include from about 20% vol to about 80% vol isobutene. In one or more embodiments, the feedstock via line 178 can include from about 40% vol to about 70% vol isobutane. In one or more embodiments, the feedstock via line 178 can include about 30% vol to about 60% vol butane and about 40% vol to about 70% vol isobutene. In one or more embodiments, the feedstock via line 178 can include at least 90% wt C4-C10 hydrocarbons. In one or more embodiments, the feedstock via line 178 can include a mixture of about 40% wt to about 95% wt C4-C10 olefinic hydrocarbons and about 5% wt to about 60% wt C4-C10 paraffinic hydrocarbons.


In one or more embodiments, the feedstock via line 178 is essentially vapor. In one or more embodiments, the feedstock via line 178 is at least 99 vol % vapor, the balance being liquid phase. In one or more embodiments, the feedstock via line 178 is at least 95 vol % vapor, the balance being liquid phase. In one or more embodiments, the feedstock via line 178 is at least 90 vol % vapor, the balance being liquid phase.



FIG. 2 depicts an illustrative system for producing olefins according to one or more embodiments. In one or more embodiments, the feedstock via line 178 can be cracked or otherwise selectively separated within one or more crackers 3305 to provide a hydrocarbon mixture (“second product”) via line 182 containing naphtha, propylene, ethylene, butane, mixtures thereof and combinations thereof. The second product can be fractionated and/or purified using one or more fractionators 3310, purifiers 3320, 3325 and separators 3330, 3335, 3350, 3355, 3360 and 3365, to provide multiple products, including propylene, ethylene, propane, and ethane. One or more products, including methane and ethylene can be internally recycled to the one or more crackers 3305, while heavier C4-C6 hydrocarbons can be recycled to the fractionator 105, and/or dehydrogenation reactors 130 depicted in FIG. 1.


Referring to FIG. 2, the second product via line 182 can exit the one or more crackers 3305 at a temperature of about 425° C. to about 680° C., about 450° C. to about 680° C., or about 480° C. to about 595° C. The second product via line 182 can include about 40% wt, 50% wt, or 60% wt C2-C10 hydrocarbons. In one or more embodiments, the second product via line 182 can include from about 5% wt to about 10% wt C2, from about 10% wt to about 30% wt C3, from about 10% wt to about 30% wt C4, and from about 40% wt to about 90% wt C5 and heavier hydrocarbons.


The crackers 3305 can be any system, device or combination of systems or devices suitable for cracking hydrocarbons. For example, each cracker 3305 can be a steam pyrolytic cracker, a hydrocracker, a catalytic cracker, or a fluidized catalytic cracker. A suitable fluidized catalytic cracker (“FCC”) can employ any catalyst useful in catalytic cracking including, but not limited to, zeolytic and shape selective zeolytic catalysts. In one or more embodiments, the catalyst-to-oil ratio can be from about 5:1 to about 70:1; from about 8:1 to about 25:1; or from about 12:1 to about 18:1.


The second product via line 182 can be selectively separated within one or more fractionators 3310 to provide a naphthenic mixture via line 312 and an olefinic mixture via line 314. In one or more embodiments, the olefinic mixture can include a major portion of one or more C2-C10 olefins and a minor portion of one or more C2-C10 paraffins. In one or more embodiments, the naphthenic mixture can include C7-C12 hydrocarbons, one or more light naphthas and/or one or more heavy naphthas. For example, the naphtha can include from about 10% wt to about 40% wt C7, from about 10% wt to about 40% wt C8, from about 5% wt to about 20% wt C9, and from about 5% wt to about 20% wt C10-C12 hydrocarbons.


The olefinic mixture via line 314 can include about 30% wt, 40% wt, or 50% wt C4-C10 olefins. In one or more embodiments, the olefinic mixture can include from about 10% wt to about 50% wt C4, from about 10% wt to about 50% wt C5, from about 5% wt to about 20% wt C6, and from about 5% wt to about 20% wt C7 and heavier hydrocarbons. In one or more embodiments, the olefinic mixture can exit the fractionator 3310 at pressures ranging from about 100 kPa up to 1000 kPa.


In one or more embodiments, the olefinic mixture via line 314 can be compressed using one or more compressors 3315 to provide a compressed olefinic mixture via line 316. Compressing the olefinic mixture via line 314 can facilitate the removal of oxygenates, acid gases, water, or any combination thereof from the hydrocarbons in the compressed olefinic mixture via line 316. The compressed olefinic mixture via line 316 can exit the one or more compressors 3315 at pressures ranging from about 100 kPa to about 5000 kPa, about 100 kPa to 3000 kPa, or about 100 kPa to 1000 kPa. In one or more embodiments, the compressed olefinic mixture can have a temperature from about 40° C. to about 300° C.


In one or more embodiments, the compressed olefinic mixture via line 316 can be treated in one or more treating units 3320 to remove oxygenates, acid gases, water, or any combination thereof to provide a treated olefinic mixture via line 322. In one or more embodiments, the treated olefinic mixture via line 322 can include less than about 500 ppmv H2S, less than about 50 ppmv H2S, or less than about 1 ppmv H2S. In one or more embodiments, the treated olefinic mixture can include less than about 500 ppmv CO2, less than about 100 ppmv CO2, or less than about 50 ppmv CO2.


The treating unit 3320 can include any system or device or combination of systems and/or devices suitable for removing oxygenates, acid gases, water, derivatives thereof, mixtures thereof, which are well known in the art of hydrocarbon refining. The treated olefinic mixture via line 322 can be dried using one or more drying units 3325 to remove entrained water, to provide a dried olefinic mixture via line 326. The dried olefinic mixture can include less than 100 ppmv H2O, less than 10 ppmv H2O, or less than 0.1 ppmv H2O.


In one or more embodiments, the dried olefinic mixture exiting the drying unit 3325 can include less than 5 ppmv H2O, less than 1 ppmv H2O, or less than 0.1 ppmv H2O. The drying unit 3325 can include any system or device or combination of systems and/or devices suitable for removing water from a hydrocarbon to provide a dried olefinic mixture via line 326. For example, the drying unit 3325 can include systems that use desiccants, solvents, or any combination thereof for removing water from a hydrocarbon.


In one or more embodiments, the dried olefinic mixture via line 326 can be introduced to one or more de-propanizers 3330 and selectively separated therein to provide an overhead containing C3 and lighter hydrocarbons via line 332, and a bottoms containing C4 and heavier hydrocarbons via line 334. In one or more embodiments, the C3 and lighter hydrocarbons via line 332 can include about 90% wt, 95% wt, or 99% Wt C3 and lighter hydrocarbons. The overhead 332 can include from about 10% wt up to about 40% wt C2, from about 20% wt up to about 70% wt C3, and from about 0.1% wt to about 1% wt H2. The overhead 332 can exit the de-propanizer 3330 at pressures ranging from about 500 kPa to about 2500 kPa. In one or more embodiments, the pressure of the overhead 332 can be from about 500 kPa to about 1000 kPa.


The C4 and heavier hydrocarbons via bottoms 334 can include about 90% wt, 94% wt, or 99% wt C4-C10. In one or more embodiments, the C4 and heavier hydrocarbons can range from about 30% wt to about 80% wt C4, from about 5% wt to about 30% wt C5, from about 5% wt to about 20% wt C6, and from about 5% wt to about 20% wt C7 and heavier hydrocarbons.


The one or more de-propanizers 3330 can include any device, system or combination of devices and/or systems suitable for selectively separating the dried olefinic mixture via line 326 to provide an overhead containing C3 and lighter hydrocarbons via line 332, and a bottoms containing C4 and heavier hydrocarbons via line 334. In one or more embodiments, the de-propanizers 3330 can include, but is not limited to, a column containing internal components, as well as one or more condensers and/or reboilers. In one or more embodiments, the de-propanizers 3330 can include packing media to facilitate the selective separation of C3 and lighter hydrocarbons from the C4 and heavier hydrocarbons. For example, each de-propanizers 3330 can include one or more saddles, balls, irregular sheets, tubes, spirals, trays, and/or baffles. In one or more embodiments, the operating pressure of the de-propanizer 3330 can range from about 500 kPa to about 2500 kPa, and the operating temperature of the de-propanizer 3330 can range from about −60° C. to about 100° C.


The C4 and heavier hydrocarbons via line 334 can be introduced to one or more gasoline splitters 3335 and selectively separated therein to provide an overhead containing C4-C6 hydrocarbons via line 336, and a bottoms containing C7 and heavier hydrocarbons via line 338. In one or more embodiments, the overhead 336 can include butanes and isobutanes. For example, the overhead 336 can include from about 50% wt to about 95% wt butanes. In one or more embodiments, the overhead 336 can include from about 10% wt to about 50% wt isobutanes. In one or more embodiments, the overhead 336 can include from about 10% wt to about 50% wt C4 olefins, from about 5% wt to about 30% wt C5 olefins, and from about 5% wt to about 20% wt C6 olefins.


In one or more embodiments, all or any portion of the overhead 336 can be recycled to the cracker 3305 via line 197. For example, from about 10% wt to about 95% wt, from about 20% wt to about 80% wt, from about 30% wt to about 70% wt, from about 40% wt to about 60% wt, or from about 45% wt to about 55% wt of the overhead 336 can be recycled to the cracker 3305 via line 197.


In one or more embodiments, all or any portion of the overhead 336 can be recycled via line 194 to the fractionators 105 and/or dehydrogenation reactors 130 (shown in FIG. 1). For example, about 20% wt to 80% wt, 30% wt to 70% wt, 40% wt to 60% wt, or 45% wt to 55% wt of the overhead 336 can be recycled to the fractionator 105 and/or dehydrogenation reactors 130 via line 194.


The gasoline splitter 3335 can include any device, system or combination of devices and/or systems suitable for selectively separating a hydrocarbon mixture to provide the overhead 336 containing the C4-C6 hydrocarbons, and the bottoms 338 containing the C7 and heavier hydrocarbons. In one or more embodiments, the gasoline splitter 3335 can include, but is not limited to, a column containing internal components, as well as one or more condensers and/or reboilers. In one or more embodiments, the gasoline splitter 3335 can include packing media to facilitate the selective separation of C6 and lighter hydrocarbons from C7 and heavier hydrocarbons. For example, each gasoline splitter 3335 can include saddles, balls, irregular sheets, tubes, spirals, trays, and/or baffles. In one or more embodiments, the operating pressure of the gasoline splitter 3335 can range from about 100 kPa to about 2500 kPa, and temperature can range from about 20° C. to about 400° C.


In one or more embodiments, all or any portion of the C7 and heavier hydrocarbons via line 338 can be introduced to one or more gasoline hydrotreaters 3385 and stabilized therein to provide a treated gasoline via line 386. In one or more embodiments, the treated gasoline via line 386 can include at least about 70% wt, 80% wt, or 90% wt C6 and heavier hydrocarbons. In one or more embodiments, the treated gasoline via line 386 can include about 75% wt to about 85% wt C6, about 15% wt to about 25% wt C7, or about 5% wt to about 10% wt C8 and heavier hydrocarbons. The gasoline hydrotreater 3385 can include any system or device or combination of systems and/or devices suitable for stabilizing a mixed hydrocarbon. In one or more embodiments, the hydrotreater 3385 can include a system that stabilizes gasoline by treating with hydrogen.


All or any portion of the treated gasoline via line 386 can be introduced to one or more BTX units 3390 to provide one or more aromatics including, but not limited to, benzene, toluene, xylene, or any combination thereof (“aromatic”), via line 392, and a raffinate via line 394. In one or more embodiments, the aromatics via line 392 can include about 40% wt, 50% wt, 60% wt, 70% wt, or 80% wt BTX. The BTX can include from about 10% wt to about 40% wt benzene, from about 20% wt to about 60% wt toluene, and from about 10% wt to about 40% wt xylene. In one or more embodiments, at least a portion of the aromatics via line 392 can be combined with line 178 and recycled to the one or more crackers 3305. Although not shown in FIG. 2, in one or more embodiments, at least a portion of the aromatics via line 392 can be directly recycled to the cracker 3305 either directly or via line 178. For example, at least about 10% wt, 20% wt, 30% wt, or 40% wt of the aromatics via line 392 can be recycled to the one or more crackers 3305, either directly or via line 178. In at least one specific embodiment, about 10% wt, 15% wt, or 20% wt of the aromatics via line 392 can be recycled to the cracker 3305, either directly or via line 178.


Although not shown, the raffinate via line 394 can be further processed. For example, all or any portion of the raffinate 394 can be directed to a steam pyrolytic cracker to recover any olefinic or paraffinic hydrocarbons therein.


Returning to the de-propanizer 3330, the overhead via line 332 can be compressed using one or more compressors 3340 to provide compressed C3 and lighter hydrocarbons via line 342. In one or more embodiments, compressing the C3 and lighter hydrocarbons can facilitate the subsequent separation of the lighter compounds from the C3. The compressed C3 and lighter hydrocarbons can be compressed to a pressure of about 500 kPa to about 3500 kPa, for example.


Line 342 can be cooled using one or more chill trains 3345 to provide a chilled line 346. The chilled C3 and lighter hydrocarbons can exit the one or more chill trains 3345 via line 346 at temperatures ranging from about −40° C. to about 40° C. In one or more embodiments, the chilled C3 and lighter hydrocarbons can have a temperature from about −20° C. to about 5° C.


In one or more embodiments, the chilled C3 and lighter hydrocarbons via line 346 can be selectively separated using one or more de-methanizers 3350 to provide an overhead 352 containing and a bottoms 354 containing C2 and C3 hydrocarbons. In one or more embodiments, the overhead 352 can include about 70 mol %, 80 mol %, or 90 mol % methane. In one or more embodiments, the bottoms 354 can include from about 20% wt to about 50% wt C2 and from about 40% wt to about 80% wt C3. In one or more embodiments, the overhead 352 can include about 50 mol % to about 95 mol % methane. In one or more embodiments, the operating pressure of the de-methanizers 3350 can range from about 300 kPa to about 1000 kPa. The C2 and C3 hydrocarbons via line 354 can include up to about 95% wt C2-C3.


In one or more embodiments, all or any portion of the overhead 352 can be compressed in one or more compressors 3395 to provide compressed methane via line 396, which can be recycled to the crackers 3305 via line 178. Although not shown in FIG. 2, in one or more embodiments, all or any portion of the compressed methane via line 396 can be recycled directly to the cracker 3305. In one or more embodiments, from about 15% vol to about 35% vol, from about 20% vol to 35% vol, from about 25% vol to 35% vol, or from about 30% vol to 35% vol of the compressed methane via line 396 can be recycled to the cracker 3305, either directly or via line 178. The compressed methane exiting the compressor 3395 can have temperature ranging from about 25° C. to about 200° C.


In one or more embodiments, the de-methanizer bottoms 354 can be introduced to one or more de-ethanizers 3355 and selectively separated therein to provide an overhead 356 containing a C2 hydrocarbon mixture and a bottoms 358 containing a C3 hydrocarbon mixture. In one or more embodiments, the overhead 356 can include about 90 mol %, 95 mol %, or 99 mol % C2 hydrocarbon mixture. In one or more embodiments, the C2 hydrocarbon mixture can include from about 5 mol % to about 70 mol % ethane and from about 30 mol % to about 95 mol % ethylene. In one or more embodiments, the bottoms 358 can include about 90 mol %, 95 mol %, or 99 mol % C3 hydrocarbon-mixture. In one or more embodiments, the C3 hydrocarbon mixture can include from about 5 mol % to about 30 mol % propane and from about 70 mol % to about 95 mol % propylene. In one or more embodiments, the operating pressure of the de-ethanizer 3355 can range from about 500 kPa to about 2500 kPa, and the temperature can range from about −80° C. to about 100° C.


In one or more embodiments, at least a portion of the C2 hydrocarbon mixture via overhead 356 can be introduced to one or more C2 splitters 3360 and selectively separated therein to provide an ethylene product via line 362 and an ethane product via line 364. The ethane product via line 364 can include about 90 mol %, 95 mol %, or 99 mol % ethane. In one or more embodiments, the ethane product can include about 95 mol %, 99 mol %, or 99.9 mol % ethane.


In one or more embodiments, the ethylene product via line 362 can include about 90 mol %, 95 mol %, or 99 mol % ethylene. In one or more embodiments, the ethylene product via line 362 can include at least about 95 mol %, 99 mol %, or 99.9 mol % ethylene. In one or more embodiments, all or any portion of the ethylene product via line 362 can be recycled to the cracker 3305. Recycling at least a portion of the ethylene product can suppress propylene production in the one or more crackers 3305, thereby increasing the yield of ethylene in the second product via line 182. In one or more embodiments, from about 10% vol to about 60% vol, from about 20% vol to about 60% vol, from about 30% vol to about 60% vol, from about 40% vol to about 60% vol, or from about 50% vol to about 60% vol of the ethylene product via line 362 can be recycled to the one or more crackers 3305. In one or more embodiments, from about 60% vol to about 99% vol, from about 70% vol to about 95% vol, or from about 80% vol to about 90% vol of the ethylene product can be recycled to the one or more crackers 3305.


The C2 splitter 3360 can be any device suitable for selectively separating a hydrocarbon mixture to provide the ethylene product via line 362 and the ethane product via line 364. In one or more embodiments, the C2 splitter 3360 can include, but is not limited to, a column containing internal components, condensers and/or reboilers. In one or more embodiments, the operating pressure of the C2 splitter 3360 can range from about 500 kPa to about 2500 kPa, and temperature can range from about −80° C. to about 100° C.


In one or more embodiments, the C3 hydrocarbon mixture via line 358 can be introduced to one or more C3 splitters 3365 and selectively separated therein to provide a propylene product (“third product”) via line 192 and a propane product via line 368. In one or more embodiments, the propane product can contain about 90 mol %, 95 mol %, 99 mol %, or 99.9 mol % propane. In one or more embodiments, the propylene product via line 192 can include from about 60% wt to about 99.9% wt propylene.


The C3 splitter 3365 can be any device suitable for selectively separating the C3 hydrocarbon mixture to provide the propylene product via line 192 and the propane product via line 368. In one or more embodiments, the C3 splitter 3365 can include, but is not limited to, a column containing internal components, as well as one or more condensers and/or reboilers. In one or more embodiments, the operating pressure of the C3 splitter 3365 can range from about 500 kPa to about 2500 kPa, and the temperature can range from about −100° C. to about 100° C.


Certain embodiments and features have been described using a set of numerical upper limits and a set of numerical lower limits. It should be appreciated that ranges from any lower limit to any upper limit are contemplated unless otherwise indicated. Certain lower limits, upper limits and ranges appear in one or more claims below. All numerical values are “about” or “approximately” the indicated value, and take into account experimental error and variations that would be expected by a person having ordinary skill in the art.


Various terms have been defined above. To the extent a term used in a claim is not defined above, it should be given the broadest definition persons in the pertinent art have given that term as reflected in at least one printed publication or issued patent. Furthermore, all patents, test procedures, and other documents cited in this application are fully incorporated by reference to the extent such disclosure is not inconsistent with this application and for all jurisdictions in which such incorporation is permitted.


While the foregoing is directed to embodiments of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.

Claims
  • 1) A process for making propylene, comprising: dehydrogenating a feed comprising butane to provide a first product comprising butene;bypassing an etherification reactor for converting isobutylene to methyl tert-butyl ether; andcracking at least a portion of the first product to provide a second product comprising propylene, ethylene, and butane, wherein cracking comprises contacting the first product with a catalyst consisting essentially of a zeolite at reaction conditions favoring conversion of the first product to propylene.
  • 2) The process of claim 1, further comprising: selectively separating at least a portion of the second product to provide a third product comprising propylene and a first recycle comprising butane; andrecycling at least a portion of the first recycle to the first product prior to cracking the first product.
  • 3) The process of claim 1, further comprising: selectively separating at least a portion of the second product to provide a third product comprising propylene and a first recycle comprising butane; andrecycling at least a portion of the first recycle to the feed prior to dehydrogenation of the feed.
  • 4) The process of claim 1, wherein the first product is heated to a temperature of from about 90° C. to about 370° C. prior to cracking.
  • 5) The process of claim 1, wherein cracking occurs at a temperature of from about 590° C. to about 675° C., and a pressure of from about 40 kPa to about 700 kPa when the first product comprises light olefinic hydrocarbons.
  • 6) The process of claim 1, wherein the reaction conditions comprise a temperature of from about 500° C. to about 700° C., a hydrocarbon partial pressure of from about 1 psia to about 30 psia, and a paraffinic hydrocarbon conversion per pass of less than 50%.
  • 7) The process of claim 1, wherein the feed comprises a mixture having of from about 40% to about 95% by weight paraffins having 4 or more carbon atoms and about 5% to about 60% by weight olefins having 4 or more carbon atoms.
  • 8) The process of claim 1, wherein the first product comprises a mixture having of from about 40% to about 95% by weight olefins having 4 or more carbon atoms and about 5% to about 60% by weight paraffins having 4 or more carbon atoms.
  • 9) The process of claim 1, wherein a fluidized catalytic reactor is used to crack at least a portion of the first product, and the fluidized catalytic reactor has a catalyst to oil ratio of from about 5:1 to about 70:1 when the first product further comprises a light olefinic hydrocarbon.
  • 10) The process of claim 1, wherein cracking occurs at a temperature of from about 550° C. to about 650° C. when the first product comprises at least 90.0% by weight hydrocarbons having 4 carbon atoms.
  • 11) A process for making propylene, comprising: dehydrogenating a feed comprising butane to provide a first product comprising butene;bypassing an etherification reactor for converting isobutylene to methyl tert-butyl ether;cracking at least a portion of the first product to provide a second product comprising propylene, ethylene, and butane, wherein cracking comprises contacting the first product with a catalyst consisting essentially of a zeolite at reaction conditions favoring conversion of the first product to propylene;selectively separating at least a portion of the second product to provide a third product comprising propylene and a first recycle comprising butane;recycling at least a portion of the first recycle to the first product prior to cracking the first product; andrecycling at least a portion of the first recycle to the feed prior to dehydrogenating the feed.
  • 12) The process of claim 11, wherein the first product is heated to a temperature of from about 90° C. to about 370° C. prior to cracking.
  • 13) The process of claim 11, wherein cracking at least a portion of the first product occurs at a temperature of from about 590° C. to about 675° C., and a pressure of from about 40 kPa to about 700 kPa when the first product comprises light olefinic hydrocarbons.
  • 14) The process of claim 11, wherein the feed comprises a mixture having of from about 40% to about 95% by weight paraffins having 4 or more carbon atoms and about 5% to about 60% by weight olefins having 4 or more carbon atoms.
  • 15) The process of claim 11, wherein the first product comprises a mixture having of from about 40% to about 95% by weight olefins having 4 or more carbon atoms and about 5% to about 60% by weight paraffins having 4 or more carbon atoms.
  • 16) The process of claim 11, wherein a fluidized catalytic reactor is used to crack at least a portion of the first product, and the fluidized catalytic reactor has a catalyst to oil ratio of from about 5:1 to about 70:1 when the first product comprises a light olefinic hydrocarbon.
  • 17) The process of claim 11, wherein cracking at least a portion of the first product occurs at a temperature of from about 550° C. to about 650° C. when the first product comprises at least 90.0% by weight hydrocarbons having 4 carbon atoms.
  • 18) The process of claim 11, wherein the reaction conditions comprise a reaction temperature of from about 500° C. to about 700° C., a hydrocarbon partial pressure of from about 1 psia to about 30 psia, and a paraffinic hydrocarbon conversion per pass of less than 50%.
  • 19) A process for retrofitting a methyl tert-butyl ether process, comprising: bypassing a feed to an existing etherification reactor for converting isobutylene to methyl tert-butyl ether, the feed comprising butene; andcracking at least a portion of the bypassed feed to provide a first product comprising ethylene, propylene, and butane, wherein cracking comprises contacting the feed with a catalyst consisting essentially of a zeolite at reaction conditions favoring conversion of the feed to propylene.
  • 20) The process of claim 19, wherein the reaction conditions comprise a temperature of from about 500° C. to about 700° C., a hydrocarbon partial pressure of from about 1 psia to about 30 psia, and a paraffinic hydrocarbon conversion per pass of less than 50%.
  • 21) The process of claim 19, further comprising: selectively separating at least a portion of the first product to provide a second product comprising propylene and a first recycle comprising butane; andrecycling at least a portion of the first recycle to the feed prior to cracking.
  • 22) The process of claim 19, further comprising: selectively separating at least a portion of the first product to provide a second product comprising propylene and a first recycle comprising butane; andrecycling at least a portion of the first recycle to a dehydrogenation reactor, wherein the feed is an effluent of the dehydrogenation reactor.
  • 23) The process of claim 19, further comprising: selectively separating at least a portion of the first product to provide a second product comprising propylene and a first recycle comprising butane;recycling at least a portion of the first recycle to the feed prior to cracking the feed; andrecycling at least a portion of the first recycle to a dehydrogenation reactor, wherein the feed is an effluent of the dehydrogenation reactor.
  • 24) The process of claim 19, wherein cracking at least a portion of the feed occurs at a temperature of from about 590° C. to about 675° C., and a pressure of from about 40 kPa to about 700 kPa when the feed comprises light olefinic hydrocarbons.
  • 25) The process of claim 19, wherein the feed comprises a mixture having of from about 40% to about 95% by weight olefins having 4 or more carbon atoms and about 5% to about 60% by weight paraffins having 4 or more carbon atoms.