1. Field of the Invention
This invention generally relates to spread spectrum code division multiple access (CDMA) communication systems. More particularly, the present invention relates to a system and method for adaptively limiting forward and reverse link transmission power within CDMA communication systems.
2. Description of the Prior Art
Wireless communication systems using spread spectrum modulation techniques represent the state of the art in digital communications and are increasing in popularity. In code division multiple access (CDMA) systems, data is transmitted using a wide bandwidth (spread spectrum) by modulating the data with a pseudo random chip code sequence. The advantage gained is that CDMA systems are more resistant to signal distortion and interfering frequencies in the transmission channel than communication systems using other multiple access techniques such as time division multiple access (TDMA) or frequency division multiple access (FDMA).
One indicator used to measure the performance of a communication system is the signal-to-noise ratio (SNR). At the receiver, the magnitude of the desired received signal is compared to the magnitude of the received noise. The data within a transmitted signal received with a high SNR is readily recovered at the receiver. A low SNR leads to loss of data.
A prior art CDMA communication system is shown in
Shown in
For timing synchronization with a receiver 26, an unmodulated pilot signal is used. The pilot signal allows respective receivers 26 to synchronize with a given transmitter 24, allowing despreading of a traffic signal at the receiver 26. In a typical CDMA system, each base station 201, 202 . . . 20N sends a unique global pilot signal received by all subscriber units 221, 222 . . . 22N within communicating range to synchronize forward link transmissions. Conversely, in some CDMA systems for example in the B-CDMA™ air interface each subscriber unit 221, 222 . . . 22N transmits a unique assigned pilot signal to synchronize reverse link transmissions.
Most CDMA systems use some form of adaptive power control. In a CDMA system, many signals share the same bandwidth. When a subscriber unit 221, 222 . . . 22N or base station 201, 202 . . . 20N is receiving a specific signal, all the other signals within the same bandwidth are noiselike in relation to the specific signal. Increasing the power level of one signal degrades all other signals within the same bandwidth. However, reducing TLP too far results in undesirable SNRs at the receivers 26. To maintain a desired SNR at the minimum transmission power level, adaptive power control is used.
Typically, a transmitter 24 will send a signal to a particular receiver 26. Upon reception, the SNR is determined. The determined SNR is compared to a desired SNR. Based on the comparison, a signal is sent in the reverse link to the transmitter 24, either increasing or decreasing transmit power. This is known as forward channel power control. Conversely, power control from the subscriber unit 22, to the base station 20, is known as reverse channel power control.
Amplifiers 641, 642 . . . 64n are used for adaptive power control in
a, 4b, 4c and 4d show a simplified illustration of three spread spectrum signals 421, 422, 423 and a resultant combined signal 44. Although each signal 421, 422, 423 is spread with a different pseudo random chip code sequence, each signal 421, 422, 423 is synchronous at the chipping rate. When the individual chips within the sequences are summed, the combined signal may have extreme transients 46, 48 where the chip energies combine or low transients 47 where they subtract.
High transient peaks are undesirable. For every 3 dB peak increase, twice the base amplification power in Watts is required. Not only does the transient burden the amplifier, but the power sourcing the amplifier must have a capacity greater than the maximum transient that may be expected. This is particularly undesirable in hand-held battery operated devices. Additionally, to design for higher power levels resulting from high transients, more complex amplifier circuitry is required or compromises between amplifier gain, battery life and communication time result. High valued transients force the amplifier 38 into the nonlinear region of its dynamic range resulting in increased out-of-band emissions and reduced amplifier efficiency. Accordingly, there exists a need for an adaptive RF transmitter system that addresses the problems associated with the prior art.
The invention reduces transient peaks in signals transmitted in CDMA communication systems. A plurality of spread spectrum data signals are combined into a combined signal having fluctuating power level corresponding to the combination of the data signals. The combined signal is modulated to produce an RF signal for transmission. The average power of the combined signal is measured over a selected time period. The combined signal power level is adaptively limited to a calculated power level based at least in part on the measured power.
a is an illustration of a first pseudo random chip code sequence.
b is an illustration of a second pseudo random chip code sequence.
c is an illustration of a third pseudo random chip code sequence.
d is an illustration of the combined chip code sequences of
The preferred embodiments will be described with reference to the drawing figures where like numerals represent like elements throughout.
The transmitter system adjusts the clipping levels, β, to eliminate the signal transients with only a small decrease in the transmittal signal-to-noise ratio (SNR).
For a system using adaptive power control,
Referring back to
The output of the power measurement device 52 is coupled to a processor 54. If the power measurement device 52 is coupled to the output of the amplifier 38, the processor 54 scales down the output of the power measurement device 52 by the gain of the amplifier 38. The processor 54 determines the proper clipping level for β. Depending on the desired SNR and bandwidth, the value for β will be a multiple of the standard deviation. If the power measurement device 52 approximates the variance, the processor 54 will take the square root of the device's output as the standard deviation. In the preferred embodiment, β will be two times the standard deviation.
In certain situations, the processor 54 overrides the determined value of β. For instance, if the transmitter 25 was used in a base station 201, 202 . . . 20N, a large increase in the number of users may result in β being temporarily set too low. This will result in an undesirable received SNR. As supplied to the processor 54 through the line 60, the number of users currently in communication with the base station 201, 202 . . . 20N, is used to either change β or temporarily disable the clipper 50 to allow all signals to pass unaltered when appropriate.
Additionally, since the probability distribution function assumes a large sample size, a small number of users may result in an undesired received SNR. Accordingly, if only a few users were in communication with the base station 201, 202 . . . 20N, the clipper 50 may be disabled. In addition, when there are only a small number of users active, the amplifier's dynamic range is not reached. Accordingly, there is no need to clip the combined signal. Under other situations, it may be necessary to override the clipper 50. For instance, in some CDMA systems short codes are used during initial power ramp up. Since these codes are not long enough to approximate a random signal, by chance one code may result in a large number of high transient peaks within the signal. Clipping these transmissions may dramatically decrease the received SNR and unnecessarily delay the initial power ramp up procedure. In these situations, a signal will be sent to the processor 54 through the line 62 to override the clipper 50.
In an alternate embodiment shown in
Although the invention has been described in part by making detailed reference to certain specific embodiments, such detail is intended to be instructive rather that restrictive. It will be appreciated by those skilled in the art that many variations may be made in the structure and mode of operation without departing from the scope of the invention as disclosed in the teachings herein.
This application is a continuation of application Ser. No. 09/386,876, filed Aug. 31, 1999, which application is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5870393 | Yano et al. | Feb 1999 | A |
5991262 | Laird et al. | Nov 1999 | A |
6094585 | Dajer et al. | Jul 2000 | A |
6118767 | Shen et al. | Sep 2000 | A |
6144860 | Komatsu | Nov 2000 | A |
6188732 | Rha | Feb 2001 | B1 |
6236864 | McGowan et al. | May 2001 | B1 |
6266320 | Hedberg et al. | Jul 2001 | B1 |
8256502 | Santa et al. | Jul 2001 | |
6434135 | Ozluturk et al. | Aug 2002 | B1 |
6473415 | Kim et al. | Oct 2002 | B1 |
6504862 | Yang | Jan 2003 | B1 |
6529560 | Creighton | Mar 2003 | B1 |
6603745 | Antonio et al. | Aug 2003 | B1 |
6636555 | Frank et al. | Oct 2003 | B1 |
6639934 | Engstrom et al. | Oct 2003 | B1 |
Number | Date | Country |
---|---|---|
0751630 | Jan 1997 | EP |
9918686 | Apr 1999 | WO |
WO9918686 | Apr 1999 | WO |
Number | Date | Country | |
---|---|---|---|
20020082052 A1 | Jun 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09386876 | Aug 1999 | US |
Child | 10090401 | US |