Method for operating a circulation system, and circulation system

Information

  • Patent Grant
  • 11525247
  • Patent Number
    11,525,247
  • Date Filed
    Wednesday, May 15, 2019
    5 years ago
  • Date Issued
    Tuesday, December 13, 2022
    2 years ago
Abstract
The invention relates to a method for operating a circulation system comprising a cooling device with an input port and an output port for cooling water. The invention also relates to a circulation system for implementing said method.
Description

This application is a U.S. National Stage Application of International Patent Application No. PCT/EP2019/062547 filed on May 15, 2019, which claims priority to German Patent Application No. 10 2018 111 579.2 filed on May 15, 2018, the entire content of all of which is incorporated by reference herein.


The invention relates to a method for operating a circulation system, as well as the circulation system, each time according to the features of the preambles of the independent claims.


In order to prevent microbial growth in cold water networks, DIN EN 806 as well as VDI Guideline 6023 require for potable water installations in buildings a limiting of the temperature of the cold potable water (PWC) in all lines of the installations at all times to a value of not more than +25° C. According to DIN EN 806-2,3.6, the water temperature for cold water locations should not go beyond +25° C. within 30 seconds of the full opening of a tapping point. Moreover, in order to prevent a stagnation of the water, the cold water installation should be designed so that, under normal operating conditions, the potable water is regularly replenished in all lines of the installation. Similarly, the VDI Guideline 6023 also contains the recommendation of holding the temperature of the potable water as much as possible below +25° C. Naturally, a limiting of the temperature of water is often also seen as necessary for other water installations, such as installations for industrial process water.


The occurrence of high PWC temperatures is favored by the solitary or combined occurrence of various circumstances, including:

    • high PWC temperatures already at the household junction,
    • thermal influencing of the regions of the installation, for example by the position and orientation of the building or the regions of the installation within the building,
    • inadequate insulation of the PWC pipelines to keep out heat,
    • installation of PWC pipelines in rooms and equipment spaces with heat sources, in common installation areas such as shafts, ducts, suspended ceilings and installation walls with heat-producing media (such as heating system pipelines, potable hot water (PWH) and potable hot water circulation systems (PWH-C), air intake and air exhaust ducts, lamps),
    • phases of the stagnation in the aforesaid installation regions,
    • highly branching PWC installations with concomitant large installation volumes,
    • overly large dimensioned PWC pipelines.


The method of preference in the effort to meet the mandated rules in stagnation phases is thus far the forced flushing of the installations in order to simulate the desired operation in these phases.


In order to provide cold potable water, various cooled circulation systems have already been proposed for the cold water network.


A cooled circulation system is already known from EP 1 626 034 A1, in which a controlled adding of a disinfectant to the water is proposed.


From DE 10 2014 013 464 A1 there is known a method for the operating of a circulation system with a heat storage, a circulation pump, a regulating unit, and at least two branches, and having an otherwise unknown pipe network structure. The branches, each possessing a valve adjustable by a driving motor, are matched up with temperature sensors, which are situated upstream from each mixing point between the branches. The driving motors and/or the circulation pump are connected for the data exchange to the regulating unit in wireless or wired manner. The regulating unit is designed to carry out a thermal and hydraulic balancing and a thermal disinfecting by limiting the range of metered temperatures and/or by adapting the pump power in dependence on a difference between an actual temperature value and a target temperature value.


From DE 20 2015 007 277 U1 there is known a potable water and service water supply arrangement of a building having a household junction for cold water, which is connected to the public supply network. The supply arrangement comprises at least one circulation conduit, which is provided with a pump and which leads to at least one consumer. A heat exchanger, extracting heat from the water, is provided in the circulation conduit.


Moreover, there is described in EP 3 159 457 A1 a potable water and service water supply arrangement of the kind known from DE 20 2015 007 277 U1, wherein the heat exchanger is formed by a latent heat storage and comprises a motorized flushing valve provided in the circulation conduit, being connected to a control device for control purposes. The flushing valve is arranged between the latent heat storage and the point where the household junction enters the circulation conduit, being situated downstream from the latent heat storage in the flow direction.


The known circulation systems with cooling of the water do not assure, or do not effectively assure, that the water temperature remains below the desired temperature for all partial sections and for all times during the operation of the circulation system.


The problem which the present invention proposes to solve is therefore to ensure in effective manner that the water temperature remains below the desired temperature for all partial sections and for all times during the operation of a circulation system.


The problem is solved according to the invention with the features of the independent patent claims.


The method according to the invention relates to a circulation system having a cooling device with an input port and an output port for the cooling of water and having a pipeline system with multiple branches comprising one or more partial sections with given thermal coupling to the surroundings and being connected by means of nodes, wherein one or more of the lines of the pipeline system are configured as a flow pipe, at least one as a single supply line connected to a tapping point, and at least one line configured as a circulation conduit connected to the flow pipe or pipes.


The method according to the invention for operating the circulation system is characterized in that a temperature change of the water between the initial region and the end region is determined according to a model of the axial temperature change for the first partial section connected to the output port, starting from a temperature start value TMA*<Tsoll and a volume flow start value Vz*, a temperature change of the water between the initial region and the end region is determined for each further given partial section connected to the first partial section according to the model of the temperature change, under the boundary condition that the water temperature in the initial region of the given partial section is equal to the water temperature in the end region of the partial section to which the given partial section is connected in the flow direction of the water, and the value Ta of the water temperature and the value Vz of the volume flow at the output port are chosen such that, in the end region of each partial section of the circulation system, the water temperature is TME<Tsoll and at the input port the water temperature is set at Tb<Tsoll with Tsoll−Tb<θ, where θ>0 is a given value.


Preferably, the determining consists in a calculating, according to the model, of the axial temperature change of the water between the initial region and the end region of the partial section, i.e., the corresponding piece of conduit, based on heat uptake from the surroundings of the partial section. Thus, beginning with the first partial section connected to the cooling device, one moves successively through the entire system of partial sections and therefore calculates the temperature in the overall system.


According to the invention, the value Ta of the water temperature and the value Vz of the volume flow at the output port for which the water temperature is TME<Tsoll in the end region of each partial section of the circulation system and the water temperature Tb<Tsoll at the input port is Tsoll−Tb<θ, where θ>0 is a given value, are determined in the method by means of a modeling of temperature and volume flows of the circulating water in the conduit system, preferably by a calculation. This is done preferably for a state with steady Vz.


The cooling device and possibly a circulation pump of the circulation system are then adjusted so that the water temperature and the volume flow take on the ascertained values of Ta and the value of Vz.


It is proposed according to the invention that a temperature is set at an output port, and temperature changes are calculated based on this and used for the modeling according to the characterizing passage of claim 1.


The advantage of a calculation is that no sensor is needed to measure anything, and one can evaluate and vary factors of influence and possibly also make predictions.


Calculation offers the advantage over a two-point regulating system and/or a cascade control of building floors or a control by pipeline branches that fewer metering points are required and the system as a whole is less prone to oscillations.


Thus, the regulation according to the invention, as opposed to the prior art, is accomplished by means of a setpoint operation at the output port, although the design of the regulator is based on the overall water conduit system with distributed parameters and a calculation of multiple temperatures TME. Hence, basically only one regulator and only one temperature setting are required to provide the temperature Ta.


A similar problem to that of a cold water network exists in the case of a hot water network. Only the operating temperatures are changed, and in place of a cooling device one employs a heater or a reservoir. The temperatures in the hot water network are between 60° C. at the reservoir outlet and 55° C. at the reservoir inlet. Unlike the cold water network, where a temperature rise occurs on account of heat input from the surroundings, heat losses result in a temperature drop in the hot water network.


The following formula holds for both the temperature drop in a hot water network and the temperature rise in a cold water network.






Δϑ
=



q
.



l



m
.

·
c


w



=


q
.



l



v
.

·
p
·
c


w








{dot over (q)}=specific heat flux in W/m


Δν=νmedium start−νmedium end hot water


Δν=νmedium end−νmedium start cold water


The invention therefore also encompasses the similar instance of a hot water network, where a reservoir or heater is used in place of a cooling device.


Moreover, the above given formulas also hold in a cold water network if the temperature of the water is higher than the ambient temperature.


In general, therefore, the invention encompasses, with corresponding adaptations of the formulas used for the calculation according to the model, the case of using a heat exchanger in place of a cooling device, which can heat or cool the water.


The term branch signifies a line consisting of a partial section or multiple partial sections between two nodes, with no further nodes lying between them. The branches are connected across nodes.


Preferably, the boundary condition that the water temperature in the initial region of the given partial section is equal to the water temperature in the end region of the partial section to which the given partial section is connected pertains only to the partial sections of a respective branch.


The temperature and the magnitude of the volume flow emerging from one node into an adjacent partial section depends on the temperatures and magnitudes of the incoming volume flows. The invention preferably assumes these to be given by the design of the pipeline system.


The apportionment of the volume flows exiting from a node among the different outgoing lines or partial sections is preferably assumed by the invention as being given by the design of the pipeline system.


Preferably, mix temperatures when branches join together and the temperatures when branches are divided are calculated based on a percentage volume flow apportionment.


In the method according to the invention, the pipeline system is assumed as given, it being understood that the pipeline system is designed in accordance with the rules of DIN 1988-300 for the design of pipe networks, specifying in particular certain nominal widths of the PWC (Potable Water Cold) lines and values for the thermal coupling of the circulating water to the surroundings. It is understood that the designs of the pipe network specified or recommended in other countries or regions can also be generally heeded.


Preferably, the highest permissible value according to the design of the pipeline system is chosen as the volume flow start value Vz*. This value is decreased until such time as the temperature of the circulating water is close to Tsoll, since with diminishing volume flow the temperature of the circulating water increases and therefore the temperature at the input port increases.


Preferably, the value TMA* is varied and the highest value Ta of the water temperature is chosen for which the water temperature at the input port is Tb<Tsoll with Tsoll−Tb<θ, where θ>0 is a predetermined value.


Given Tsoll−Tb<θ, it is ensured that the water temperature in the circulation system is not set too cold and the system is not operated in an energy ineffective manner. Typically, θ lies in a range between 1° C. and 5° C., but it may also lie in another range.


The determination of the temperature change of the water between the initial and end region of each partial section can be done according to models which are known in themselves, for example by simulation calculations or also appropriate known formulas.


When implementing the method according to the invention, the circulation system is preferably operated in a state in which no water removal and no water uptake occurs, because in this state a greater heating of the water may be expected than in a state in which a water removal occurs, and therefore a safety margin from a state with undesirably high water temperature is assured by using the parameters Ta and Vz as determined by the method.


The parameters Ta and Vz as determined by the method are used advantageously to model a given circulation system, in which the pipeline system is designed in accordance with the legal specifications regarding nominal widths and thermal coupling of the circulating water to the surroundings, and to operate it such that the mandated rules regarding the temperature of the potable water in the circulation system are fulfilled.


Simulations of the applicant for already existing systems have revealed that, by using the parameters set according to the invention: a) the mentioned legal requirements are fulfilled, and b) a greater energy efficiency of the system operation is achieved.


The parameters Ta and Vz as determined by the method are used advantageously in order to determine the design of the cooling device in terms of its cooling power in a given circulation system, in which the pipeline system is designed in accordance with the legal specifications regarding nominal widths and thermal coupling of the circulating water to the surroundings. Moreover, the design of a circulation pump may be determined in regard to its pumping power.


The following terms shall be used in this text with a specific meaning, the definition relying on the standard DIN EN 806.


The circulation conduit of the circulation system denotes a conduit downstream from a tapping point in the circulation, in which water runs from the output port of a cooling device back to the input port of the cooling device, if no further tapping point is connected to this conduit.


The term node is used fora conduit element to which conduits are connected. Either at least two volume flows may enter a node and exactly one volume flow depart from it, or exactly one volume flow may enter and at least two volume flows may depart from it. A node corresponds to a branching point.


Preferably, exactly two volume flows enter a node of the circulation system and one volume flow departs from it, or exactly one volume flow enters and exactly two volume flows depart from it, for example, in the manner of a T-piece.


Kirchhoff's first law applies to the nodes of the circulation system, by analogy with electrical circuits, whereby the sum of the incoming volume flows is equal to the sum of the outgoing volume flows.


Preferably, the outgoing volume flows at each node point are apportioned in departing volume flows of equal size. It is to be understood that other apportionments are also possible.


For a node with exactly one departing volume flow with different temperatures and exactly one entering volume flow it is preferably assumed that the temperature tm and the mass flow mm of the mix water of the departing volume flow are related by the following equation to the temperature tk and mass flow mk of the colder flow or the temperature tw and mass flow mw of the warmer flow:







t
m

=




t
k

*

m
k


+


t
w

*

m
w




m
m






tm=Temperature of mix water (° C.)


tk=Temperature of colder water (° C.)


tw=Temperature of warmer water (° C.)


mm=Mass/volume (flow) of mix water (kg; m3; kg/h; m3/h or %)


mk=Mass/volume (flow) of cold water (kg; m3; kg/h; m3/h or %)


mw=Mass/volume (flow) of warm water (kg; m3; kg/h; m3/h or %)


For the determination of the temperature change of the water between the initial and end region of a partial section, the following parameters can be used preferably, along with the length of the partial section

    • TLuft=the temperature of the ambient air (° C.)
    • kR=the heat transfer coefficient of the pipeline (W/(m*K))
    • mM=the mass flow of the water in the partial section (kg/s)
    • cp.m=the spec. heat capacity of the water (J/(kg*K)
    • VM=the volume flow of the water in the partial section (m3/s)
    • pM=the density of the water (kg/m3)


Advantageously, a temperature change of the water between the initial region and the end region can be determined for each partial section of the circulation system during a stationary volume flow, wherein the water temperature in the end region of a given partial section is chosen equal to the water temperature in the initial region of the partial section to which the given partial section is connected in the flow direction of the circulating water. Therefore, for each partial section of the circulation system it is possible to determine the temperature of the water in the end region of the respective partial section by starting from the temperature in the initial region.


Advantageously, starting from a temperature at the output port during a stationary volume flow it is possible to determine the temperature of the circulating water for each partial section, i.e., it is also possible to determine a value Ta of the water temperature at the output port as the initial temperature of the partial section adjacent to the output port such that the water temperature is TME<Tsoll for the end regions of all partial sections.


In a further embodiment of the invention it is proposed that the values Ta and Vz are determined in an iterative approximation procedure, wherein the water temperature TME in the end region is calculated for each given partial section, starting from a temperature start value TMA*<Tsoll and a volume flow start value Vz* for the first partial section connected to the output port, the water temperature TMA* in the initial region of the next connected partial section being chosen equal to the water temperature TME in the end region of the given partial section.


In a further embodiment of the invention it is proposed that the partial sections are designed axially uniformly in regard to their thermal coupling to the surroundings along the length between their initial region and their end region, i.e., they do not change axially. This enables a simplification of the computations.


In a further embodiment of the invention it is proposed that the water temperature TME in the end region of at least one partial section with length L is determined by means of the formula








T
ME

=



(


T
MA

-

T
Luft


)

*

e


-
ε

*
L



+

T
Luft






ε
=



k
R



m
M

*

c
pm



=


k
R



V
M

·

P
M

·

C
pm









where

    • L=the length (m) of the uniform partial section (TS1)
    • TMA=the water temperature in the initial region (° C.)
    • TME=the water temperature in the end region (° C.)
    • TLuft=the temperature of the ambient air (° C.)
    • kR=the heat transfer coefficient of the pipeline (W/(m*K))
    • mM=the mass flow of the water in the partial section (kg/s)
    • cp.m=the spec. heat capacity of the water (J/(kg*K)
    • VM=the volume flow of the water in the partial section (m3/s)=
    • pM the density of the water (kg/m3)


This formula allows a good approximation of the temperature change for uniform partial sections.


In another embodiment of the invention, it is proposed that the heat transfer coefficient of the partial sections is determined by the formula







1

k
R


=


1


d
i

*

α
i

*
π


+

1

Λ
R


+

1


d
a

*

α
a

*
π







where

    • 1/kR=the heat transmission resistance of the pipeline (m*K/W)
    • αi=the inward heat transfer coefficient (W/(m2*K))
    • 1/ΛR=the thermal resistance (m*K/W)
    • aa=the outward heat transfer coefficient (W/(m2*K))
    • da=the outer diameter (m)
    • di=the inner diameter (m)


and







1

Λ
R


=


1

2
*
π


*

(



1

λ
r


*
ln



d
aR


d
iR



+


1

λ
D


*
ln



d
aD


d
iD




)






In the following, equations 1-4 shall be used to determine the temperature changes and the heat gain in the water due to the temperature difference from the surroundings.


For this, equation 1 for the thermal resistance is inserted into equation 2 and thus the heat transition resistance is found. The heat transfer coefficient, equation 3, is calculated using the reciprocal of equation 2.


Thermal resistance






1

λ

g

e

s







of a pipeline incl. insulation











1

λ
ges


=


1

2
·
π


·

(




1

λ
R


·
ln




d
aR


d
iR



+



1

λ
D


·
ln




d
aD


d
iD




)



,




Equation


1







Heat transition resistance






1

U
R






of the insulated pipeline











1

U
R


=


1


d

i

R


·

a
i

·
π


+

1

λ

g

e

s



+

1


d

a

D


·

a
a

·
π




,




Equation


2












1

U
R


=



1

2
·
π


·

(




1

λ
R


·
ln




d

a

R



d

i

R




+



1

λ
D


·
ln




d

a

D



d

i

D





)


+

1


d

a

D


·

a
a

·
π







Heat transfer coefficient UR of the insulated pipeline










U
R

=

π



1
2

·

(



1

λ
R


*
ln



d
aR


d
iR



+


1

λ
D


*
ln



d
aD


d
iD




)


+

1


d
aD

·

a
a









Equation


3







The heat transfer coefficient is the central component of equation 4 for calculating a temperature at the end of a partial section.


With the aid of equation 4, the respective starting and end temperatures of the cold water are found for all relevant partial sections. The deriving of the formula for the axial heating of water in a pipeline starts with equation 5:










ϑ
ME

=



Δϑ
a

·

e



-

U
R


·
l


m
·

c
w





+

ϑ
Luft






Equation


4













ϑθ
=


Δϑ
a

(

1
-

e



-

U
R


·
l


m
·

c
w





)


,




Equation


5








see VDI 2055, 2008









Δϑ
=



ϑ


M

A

-




ϑ
ME










ϑ


M

A

-




ϑ
ME


=



Δϑ
a

(

1
-


e



-

U
R


·
l


m
·

c
w





)








ϑ
ME

=



-


Δϑ
a

(

1
-


e



-

U
R


·
l


m
·

c
w





)


+

ϑ
MA









ϑ
ME

=



-

Δϑ
a


+


Δϑ
a



e



-

U
R


·
l


m
·

c
w





+

ϑ

M

A










insert ΔνaMA−νLuft and then combine.








ϑ
M


e

=



Δϑ
a



e



-

U
R


·
l


m
·

c
w





+

ϑ
Luft






In an iterative calculation with incremental/stepwise increasing of the volume flow, one seeks that volume flow which operates the cold water installation with a desired/given spread of 5 K (15° C./20° C.), for example.


With the aid of this solution, it is possible to determine not only a volume flow of the circulation system, which is the primary consideration, but also a water temperature for any given point in the particular pipeline network.


Preferably, the iterative approximation method is the known Excel target value search; see Excel and VBA: an introduction with practical applications in the natural sciences, by Franz Josef Mehr, María Teresa Mehr, Wiesbaden 2015, section 8.1.


According to the invention, key data of the pipeline system including the above indicated parameters of the partial sections are entered into the program and the target value search is used to determine the volume flow Vz for which the potable water target temperature Tb is achieved; for example, as follows


3.1.1 Material Values, Water














No.

Value/


MT
Designation
units


















MT1
Potable water input temperature after
15.0°
C.



output port


MT2
Target potable water temperature
20.0°
C.


MT3
Density of water at 17.5° C.
998.8
kg/m3


MT4
Volume flow Vz
0.022
m3/h


MT5
Specific heat capacity
1.163
Wh/(Kg*K)









3.1.2 Heat Transmission Coefficients


















No.






W
Designation

(W/(m2*K))









Wi
Heat transmission coefficients
αa
5




outward



Wa
Heat transmission coefficients
αi
0




inward










3.1.3 Ambient Temperatures

















No.

Temperature



UT
Designation
tLuft in ° C.









UT1
Boiler room
30° C.



UT2
Basement corridor
20° C.



UT3
Shaft
30° C.



UT4
Wallway suspended ceiling
33° C.



UT5
Bathroom front wall
26° C.



UT6
Return shaft
26° C.










3.1.4 Insulation


















Thermal





conductivity





coefficient


No.


λDA


DA
Designation
Material
in W/(m*K)


















DA1
Rockwool with PVC
Boiler room
0.035


DA2
Rockwool aluminum lined
Basement corridor
0.035


DA3
Rockwool aluminum lined
Riser
0.035


DA4
Rockwool aluminum lined
Hallway ceiling
0.035


DA5
Flex EL-Conel 24 × 18
Bathroom front wall
0.032


DA6
with 9 mm insulation in
Bathroom floor
0.04



the floor









3.1.5 Pipe Materials




















Thermal




Nominal
Wall
conductivity


No.

width
thickness
coefficient


DA
Designation
mm
mm
λR in W/(m*K)



















R1
Viega Raxofix
16 × 2.2
2.2
0.4


R2
Viega Raxofix
20 × 2.8
2.8
0.4


R3
Viega Raxofix
25 × 2.7
2.7
0.4


R4
Viega Raxofix
32 × 3.2
3.2
0.4


R5
Viega Raxofix with
16 × 2.2
2.2
0.35



insulation


R6
Viega Raxofix with
20 × 2.8
2.8
0.35



insulation


R7
Viega Raxofix with
25 × 2.7
2.7
0.35



insulation


R8
Viega Raxofix with
32 × 3.2
3.2
0.35



insulation


R9
Viega Sanpress
15 × 1.0
1
23


R10
Viega Sanpress
18 × 1.0
1
23


R11
Viega Sanpress
22 × 1.2
1.2
23


R12
Viega Sanpress
28 × 1.2
1.2
23


R13
Viega Sanpress
35 × 1.5
1.5
23


R14
Viega Sanpress
42 × 1.5
1.5
23


R15
Viega Sanpress
54 × 1.5
1.5
23


R16
Viega Sanpress
64 × 2
2
23









In this example, the calculated volume flow Vz for which a target temperature Tb of 20° is achieved for an input temperature Ta of 15° C. is indicated in row MT4.


In a further embodiment of the invention it is proposed that a circulation pump is integrated in the circulation system, so that a desired volume flow can be set.


Of course, several cooling devices and/or circulation pumps can also be provided.


In the following, embodiments shall be described with pipeline structures such as are used typically for potable water installations in buildings.


A connection line is a line between a supply line and a potable water installation or the circulation system.


A consumer line is a line which takes the water from the main shutoff valve to the junctions of the tapping points and optionally to appliances. A collective feed line is a horizontal consumer line between the main shutoff valve and a riser pipe. A riser pipe (downpipe) leads from one floor to another, and the building floor lines or single supply lines branch off from it. A building floor line is the line branching off from the riser pipe (downpipe) within a building floor and the single supply lines branch off from it. A single supply line is the line leading to a tapping point.


In one embodiment of the invention it is proposed that at least one flow pipe is connected to at least one loop line.


In a further embodiment of the invention it is proposed that at least one branch of the circulation conduit departs from the at least one flow pipe.


In a further embodiment of the invention it is proposed that at least one branch of the at least one circulation conduit departs from the at least one loop line.


In a further embodiment of the invention it is proposed that the at least one flow pipe comprises at least one riser line and/or a building floor line.


In a further embodiment of the invention it is proposed that the at least one flow pipe comprises a collective feed line, which is connected by a junction to a water supply network.


In a further embodiment of the invention it is proposed that the junction is connected to at least one connection line and/or at least one consumer line.


In a further embodiment of the invention it is proposed that at least one static or dynamic flow divider is arranged in the at least one flow pipe and/or the at least one loop line, by which preferably one tapping point for water is connected. Preferably, a percentage apportionment of the volume flows of 95% at the exit and 5% passing through is accomplished.


In a further embodiment of the invention it is proposed that the cooling device for the cooling of the circulating water is used to transfer thermal energy from the circulating water to another material flow, preferably by means of a heat transfer agent, which can achieve an optimization of the cooling process by suitable choice of the other material flow, such as propane, and a lessening of the energy required for the operation of the cooling device.


In a further embodiment of the invention it is proposed that the cooling device is thermally coupled to a cold generator, preferably a heat pump, a water chiller or a cold supply network, which can likewise accomplish a lessening of the energy required for the cooling process.


In a further embodiment of the invention, it is proposed to determine a consumer characteristic of the circulation pump in dependence on the delivered volume flow of the circulation pump and to determine a consumer characteristic of the cooling device in dependence on a water temperature at the output port and to adjust a volume flow Vz and a water temperature Ta at the output port such that the power consumption of the circulation pump and the cooling device takes on a relative or absolute minimum value, thereby improving the energy efficiency of the method.


In a further embodiment of the invention it is advisedly proposed that a value of 20° C.+/−5° C. is chosen for the temperature Tsoll and a value of 15° C.+/−5° C. is chosen for the water temperature Ta at the output port.


In a further embodiment of the invention it is proposed that at least one partial section of the pipeline system is designed as an outer circulation conduit, since outer circulation conduits are usually installed particularly in already existing circulation systems.


In a further embodiment of the invention it is proposed that at least one partial section is designed as an inliner circulation conduit, since these are often installed in newer or new circulation systems.


Further benefits will be evident from the following description of the drawings.





The drawings show exemplary embodiments in the specification. The drawing, the specification, and the claims contain many features in combination. The skilled person will also advisedly consider the features individually and combine them into further meaningful combinations.


There are shown, as an example:



FIG. 1: in schematic representation, a circulation system according to the invention



FIG. 2: a further embodiment of a circulation system according to the invention



FIG. 3: a further embodiment of a circulation system according to the invention, in which a further heat exchanger is provided



FIG. 4: a further embodiment of a circulation system according to the invention



FIG. 5: a further embodiment of a circulation system according to the invention



FIG. 6: a further embodiment of a circulation system according to the invention



FIG. 7: a further embodiment of a circulation system according to the invention



FIG. 8: a further embodiment of a circulation system according to the invention





The circulation systems represented in FIGS. 1 to 8 are merely examples, the invention not being limited to these systems. In all the systems shown, exactly two volume flows enter a node and one volume flow departs from it, or exactly one volume flow enters and exactly two volume flows depart from it, as in the case of a T-piece. However, the invention is not limited to systems with such nodes. Basically, all of the lines represented between nodes and between nodes and input port, as well as nodes and output port, may consist of one or more partial sections, as defined above.


Similar components are given the same reference numbers.


In the circulation system represented in FIG. 1, one node K1 is connected across a flow pipe 4a to an output port 12b of a cooling device 12. The cooling device 12 has connections on the refrigeration side and a refrigeration pump 13.


At the node K1 there is provided a branching point to a collective line 4, a connection line to a junction 1 at a water supply network and a consumer line 3, the latter and the connection line not being part of the circulation system. Therefore, no volume flow apportioning occurs at the node K1.


The collective feed line 4 is connected to a riser pipe 5, which empties into a node K2. The node K2 branches into a building floor line 6 and a riser pipe 5, which empties into a node K3 and at which there occurs a branching to a building floor line 6 and a riser pipe 5, [which] is connected to a building floor line 6, which empties into a node K4. The node K2 is connected by a building floor line 6 to a node K6. The node K3 is connected by a building floor line 6 to a node K5.


Two partial sections TS1 and TS2, explicitly characterized as such, are connected across the node K4, TS1 representing a partial section of the building floor line 6 and TS2 representing a circulation conduit.


Moreover, at node K4 there occurs a branching across a single supply line 7 to a tapping point 9. To simplify matters, the single supply lines and tapping points connected to the nodes K2 and K3 are not given reference numbers. Since the circulation system according to the invention is operated in order to carry out the method according to the invention in a state in which no water removal occurs, the nodes which are coordinated with the tapping points are not considered in the following and, accordingly, not given reference numbers in the drawings, except for node K4.


The partial section TS2 is connected to a vertical circulation conduit 10a, which empties into the node K5. The node K5 is connected to a circulation conduit 10a, which empties into the node K6. The node K6 is connected to a vertical circulation conduit 10a, which is connected to a horizontal circulation conduit 10a, which in turn is connected across a vertical circulation conduit to the circulation pump 10b.


The circulation system represented in FIG. 2 has a similar structure to the system of FIG. 1, but loop lines are provided in the building floor lines 6, and to simplify matters a reference number 8 is used only for the uppermost loop line represented in FIG. 2. The loop line 8 is coordinated with an optional flow divider 8a. Loop lines are coordinated with nodes K21 to K32.


It is understood that such systems in which only one loop line is present are also covered by the invention.



FIG. 3 shows another system with nodes K31 to K34, but here the circulation conduits 10a emptying into the nodes K34 and K35 are led in parallel with the building floor lines 6 departing from the nodes K32 and K33.


Moreover, an optional decentralized cooling device 14 with an input port 14a and an output port 14b is arranged in the uppermost building floor line 6, while to simplify the representation the existing junctions of a cold-side circuit and a corresponding pump are not shown.


Similarly, further decentralized cooling devices can be arranged in the other building floor lines.


In another embodiment similar to FIG. 3, the heat exchanger 12 may be omitted; in this case, one cooling device 14 or multiple cooling devices 14 are necessary.


Similar to the embodiment of FIG. 3, cooling devices can be provided in the riser pipes 5 and the building floor line of the embodiments of FIGS. 1, 2 and 4 to 8.



FIG. 4 shows a system with nodes K41 to K51 as in FIG. 3, but loop lines 8 are provided in the building floor lines.



FIG. 5 shows a system with nodes K51 to K55, in which circulation conduits 10 are led in parallel with the riser pipes 5 connected to the nodes K52, K53.



FIG. 6 shows a system with the nodes K61 to K69b, where loop lines are provided between the nodes K63, K64, K66, K67 and K68, K69.



FIG. 7 shows a system with the nodes K71 to K75, where riser pipes 5 are connected to the nodes K72 and K73.



FIG. 8 shows a system with nodes K81 to K89b similar to FIG. 7, but with loop lines arranged between the nodes K89a, K89b, K88, K89 and K84 and K85.


The embodiments represented in the clean drawings under FIGS. 1, 3, 5, 7 can also allow only partial regions to have a circulation. Thus, the partial sections may also represent installations in dwellings, for example, which are not permitted to circulate together on account of different requirements (account metering of the water consumption). A water exchanging to maintain the desired temperature could be possible here with automatic flushing.


The method according to the invention is implemented in the systems of FIGS. 1 to 8 in the above-described manner: starting from a temperature start value TMA*<Tsoll and a volume flow start value Vz* for the first partial section connected to the output port (12b), a temperature change of the water between the initial region and the end region is determined according to a model of the temperature change.


Moreover, a temperature change of the water between the initial region and the end region for each further given partial section is determined according to the model of the temperature change, under the boundary condition that the water temperature in the initial region of the given partial section is equal to the water temperature in the end region of the partial section to which the given partial section is connected.


Preferably, one uses the above-described model of the axial temperature change, according to which the water temperature TME in the end region of a partial section of length L is calculated by the formula








T
ME

=



(


T
MA

-

T
Luft


)

*

e


-
ε

*
L



+

T
Luft






ε
=



k
R



m
M

*

c
pm



=


k
R



V
M

*

P
M

*

C
pm









The value Ta of the water temperature and the value Vz of the volume flow at the output port 12b are chosen such that, in the end region of each partial section of the circulation system, the water temperature is TME<Tsoll and at the input port 12a the water temperature is Tb<Tsoll with Tsoll−Tb<θ, where θ>0 is a predetermined value.


It is understood that the circulation pump 10b is not always operated with a constant volume flow, i.e., regardless of whether the port inlet temperature 12a has exactly the setpoint value or even lies below it.


If the port inlet temperature 12a for various reasons should lie at 17° C. for example, where a max. of 20° C. is given, the delivery volume flow of the circulation pump 10b could be reduced. This can be done automatically, for example, under temperature control. As a result, energy savings will be achieved.


Likewise, in such a case the delivery volume flow of the pump 13 can be reduced by temperature control.


If the port inlet temperature for various reasons should lie at 17° C. for example (where a max. of 20° C. is given for example), the flow temperature in the refrigeration circuit could likewise be adjusted. As a result, energy savings would be achieved.












TABLE 1





Symbol
Unit
Designation
Explanation







cw
kJ(kg K)
Specific heat
Heat for the heating




capacity of the
of 1 kg of water by




water
1K (4.19 kJ/(kg K))


ρ
kg/m3
Density of the
Quotient of mass




water
and volume of





water at given





temperature


αa
W(m2 K)
Outward heat
Heat loss of a 1 m2




transmission
surface for a temperature




coefficient
difference between the





surface and air of 1K


λD
W(m K)
Thermal





conductivity





of the insulation



λR
W(m K)
Thermal





conductivity





of the pipeline



λges
W(m K)
Thermal
insulation




conductivity of a





structural piece,





here a pipeline





incl. multilayered










1

λ
ges





(m K)W
Thermal resistance










1

U
R





(m K)W
Heat transition resistance






UR
W(m K)
Heat transfer
Heat loss of a 1 m




coefficient
long insulated




for the pipe
hot water pipe





at a temperature





difference between





the water and





the air of 1K


da
mm
Pipe outer diameter
Outer diameter of a





hot water line


D
mm
Pipe outer diameter
Outer diameter of





an insulated





hot water line


L
m
Pipeline length
Length of a partial





section


ϑLuft
° C.
Air/surrounding





temperature



Δϑa
K
Starting temperature
Temperature difference




difference
between surroundings





and medium at the





start of a partial section


ϑMA
° C.
Medium temperature
Temperature of a




at start
medium at the





start of a partial section


ϑME
° C.
Medium temperature
Temperature of a




at end
medium at the end





of a partial section









LIST OF REFERENCE NUMBERS




  • 1 Connection to a water supply network


  • 2 Connection line


  • 3 Consumer line


  • 4 Collective feed line


  • 5 Riser (down pipe)


  • 6 Building floor line


  • 7 Single supply line


  • 8 Loop line


  • 8
    a Static or dynamic flow division


  • 9 Tapping point


  • 10 Circulation system


  • 10
    a Circulation conduit


  • 10
    b Circulation pump


  • 12 Cooling device


  • 12
    a Input port


  • 12
    b Output port


  • 14 Heat exchanger


  • 14
    a Input port


  • 14
    b Output port


Claims
  • 1. A circulation system comprising: a cooling device for cooling water, the cooling device comprising: an input port,an output port, andwherein the cooling device is configured to identify water temperature at the input port and the output port and to produce water at a set temperature value (Ta) at the output port;a branched pipeline system in fluid communication with the input port and output port of the cooling device, the branched pipeline system comprising: pipe units, comprising at least one single supply line connected to a tapping point,at least one circulation conduit, and at least one flow pipe, wherein the at least one flow pipe comprises at least one of a collective feed line, a riser line, and a building floor line,more than one node, wherein each of the pipe units are connected together through one of the nodes,one or more partial sections thermally coupled to a surrounding, the partial sections comprising one or more pipes units, wherein each partial section further comprises an initial region and end region and wherein each partial section is connected to at least one node proximate at least one of the initial region and the end region; andwherein, for a given apportionment of a volume of water flow emerging from any specified node into one of the pipe units, a mixed water temperature is determinable based on the water flow from the one or more pipe units entering the specified node;a circulation pump in fluid communication with at least one of the pipe units of the branched pipeline system, wherein the circulation pump is configured to provide a particular volumetric rate of water flow (Vz) at the input port of the cooling device and provide water flow through the at least one circulation conduit when water is not being removed through a tapping point; anda regulator, wherein the regulator is configured to formulaically determine a partial section temperature change of water between the initial region and end region of each of the one or more partial sections, and wherein the regulator is also configured to formulaically determine and operationally set the set temperature value (Ta) and the particular volumetric rate of water flow (Vz) such that the water temperature proximate the end region of the one or more partial sections (TME) and the water temperature at the input port of the cooling device (Tb) is less than a target temperature (Tsoll) and any difference between Tsoll and Tb is less than a positive given value (θ).
  • 2. The circulation system of claim 1, wherein the regulator formulaically determines the set temperature value (Ta) and volumetric rate of water flow (Vz) through iterative approximation based on a determined temperature for each of the end region of one or more partial sections (TME) initially utilizing a temperature start value (TMA*) and a volume rate flow start value (Vz*) for the output port of the cooling device.
  • 3. The circulation system of claim 1, wherein the one or more partial sections are thermally coupled to the surrounding through a uniform design along their length between the initial region and end region thereof.
  • 4. The circulation system of claim 1, wherein the pipe units further comprise at least one loop line connected to and in fluid communication with the at least one flow pipe.
  • 5. The circulation system of claim 1, wherein the at least one circulation conduit is connected to and in fluid communication with the at least one flow pipe.
  • 6. The circulation system of claim 4, wherein the at least one circulation conduit is connected to and in fluid communication with the at least one loop line.
  • 7. The circulation system of claim 1, wherein the at least one flow pipe comprises at least one riser line and at least one building floor line.
  • 8. The circulation system of claim 1, wherein the at least one flow pipe comprises a collective feed line connected to a water supply network through a junction.
  • 9. The circulation system of claim 8, wherein the junction is connected to at least one of a connection line and a consumer line.
  • 10. The circulation system of claim 1, further comprising at least one flow divider disposed in at least one of the at least one flow pipe and at least one loop line.
  • 11. The circulation system of claim 1, wherein the cooling device is thermally coupled to a device selected from the group consisting of a cold generator, a heat pump, a water chiller, or a cold supply network.
Priority Claims (1)
Number Date Country Kind
102018111579.2 May 2018 DE national
PCT Information
Filing Document Filing Date Country Kind
PCT/EP2019/062547 5/15/2019 WO
Publishing Document Publishing Date Country Kind
WO2019/219785 11/21/2019 WO A
US Referenced Citations (4)
Number Name Date Kind
20090020172 Walker Jan 2009 A1
20120204981 Coerdt Aug 2012 A1
20120211085 Abbing Aug 2012 A1
20180135870 Theile May 2018 A1
Foreign Referenced Citations (4)
Number Date Country
102014013464 Mar 2016 DE
202015007277 Jan 2017 DE
1626034 Feb 2006 EP
3159457 Apr 2017 EP
Non-Patent Literature Citations (1)
Entry
ISA/EP, International Search Report for corresponding PCT Patent Application No. PCT/EP2019/062547, dated Sep. 20, 2019, 2 pages.
Related Publications (1)
Number Date Country
20210189701 A1 Jun 2021 US