This application claims benefit under 35 USC §119 to European Patent Application No. 11179344.4 filed Aug. 30, 2011, the entire contents of which are incorporated by reference herein as if fully set forth.
The present invention relates to a method for operating a combustion device. In particular, the method according to the invention allows operation of a combustion device with reduced pulsations. Preferably the combustion device is a part of a gas turbine.
In the following particular reference to combustion devices that are part of a gas turbine is made; it is anyhow clear that the method can also be implemented in combustion devices for different applications. Thus, before the combustion device a compressor and after the combustion device a turbine are typically provided.
Combustion devices are known to include a body with a fuel supply for either a liquid fuel (for example oil) or a gaseous fuel (for example natural gas) and an oxidizer supply (usually air).
During operation, the fuel and the oxidizer react within the combustion device and generate high pressure and temperature flue gases that are expanded in a turbine.
During transient operation, such as for example when the gas turbine is started up, switched off, during fuel switch over or also during other transient operations, problems can occur.
In fact, during transient operations pressure waves can generate within the combustion device.
at the period in time t=t0 faces an environment at a low pressure P1; this promotes fuel supply through the injector; and
at the period in time t=t1 faces an environment at a high pressure P2; this hinders fuel supply through the injector.
Likewise,
Also in this case, an injector will face a combustion device having a pressure that fluctuates with time; as explained above, this fluctuating pressure adversely influences fuel injection.
before t=t3: steady operation with substantially constant fuel mass flow through the injector (curve 1),
between t=t3 and t=t4 (the fuel mass flow stays above a critical fuel mass flow Mc): the amount of fuel injected decreases, but the fluctuating pressure within the combustion device does not noticeably affect fuel injection (curve 2),
after t=t4 (i.e. when the fuel mass flow falls below the critical fuel mass flow Mc): in these conditions, since the amount of fuel is low, the fluctuating pressure within the combustion device alternatively promotes and hinders fuel injection, causing a fluctuating fuel injection. In particular in
Fluctuating fuel supply into the combustion device generates large combustion pulsations.
Combustion pulsations, largely mechanically and thermally, stress the combustion device and the turbine downstream of it, therefore they must be counteracted.
An aspect of the present invention thus includes providing a method by which combustion pulsations generated during transient operation are counteracted.
This and further aspects are attained by providing a method in accordance with the accompanying claims.
Further characteristics and advantages of the invention will be more apparent from the description of a preferred but non-exclusive embodiment of the method, illustrated by way of non-limiting example with reference to the accompanying drawings, in which:
The method can be implemented with any kind of combustion device, for example adapted to generate a premixed flame, a diffusion flame, a mixed flame, etc.
For example the combustion device can be a premixed combustion device 5 (
A different kind of premixed combustion devices 15 is for example schematically shown in
These combustion devices 25 have a body 26 with fuel supply including fuel injectors 27 (liquid or gaseous fuel) and oxidizer supply including oxidizer injectors 28.
In all the figures, reference 30 indicates the flame and reference G indicates the hot gases generated in the combustion device and directed toward the turbine.
In the following, particular reference to the embodiment of
The method for operating a combustion device 5 comprises supplying a fuel 35 and an oxidizer 36 into the combustion device 5 and burning them.
In addition, during at least a part of a transient operation such as for example a start up, a switch off or a switch over, an additional fluid 37 is supplied into the combustion device 5 together with the fuel 35.
The additional fluid 37 is advantageously supplied through the same injectors as the fuel 35 and it is typically at least partly mixed with the fuel 35.
The amount of the additional fluid 37 is thus regulated to counteract combustion pulsations.
With reference to
In different examples, the first parameter can be the fuel mass flow M or the differential pressure ΔP between a fuel supply and the inside of the combustion device 5; in these cases additional fluid supply starts when the fuel amount supplied into the combustion device or the differential pressure falls below the critical value Mc or ΔPc.
In addition, a second parameter SP indicative of the fuel and additional fluid feed is also chosen; the regulation includes maintaining the second parameter above or below a given value (
The given value can be a critical value SPc of the second parameter SP. Also in this case, the critical value can be chosen such that when the second parameter reaches or passes it, pulsations start to generate or to substantially generate.
In different examples the second parameter range R corresponds to the critical value SPc of the second parameter ±10% or preferably to the critical value SPc of the second parameter ±1% or more preferably to the critical value SPc of the second parameter.
Preferably, the bottom or the top of the range corresponds to the critical value SPc of the second parameter.
The second parameter SP can be the fuel and additional fluid mass flow M or the differential pressure ΔP between a fuel and additional fluid supply and the inside of the combustion device 5. In these cases the regulation includes maintaining the total mass flow of fuel 35 and additional fluid 37 or differential pressure AP above the critical value or maintaining them within the prefixed range R.
To measure the differential pressure ΔP the control device shown in
The fuel 35 is supplied into the combustion device 5 via a fuel supply (for example the lance 9 or the lines 11 but, in the other examples of combustion devices 15, 25, also lance 20); the additional fluid 37 is preferably also supplied into the same fuel supply (i.e. into the lance 9 or the lines 11 or lance 20).
Advantageously, the additional fluid 37 is at least partly mixed with the fuel 35 and in this respect a mixer 49 can be provided.
The additional fluid 37 is preferably an inert fluid; inert fluid is a fluid that does not react during burning, i.e. it is neither a fuel nor an oxidizer.
In addition, when the fuel is a liquid fuel, the inert fluid is preferably a liquid fluid (for example the fuel can be oil and the additional fluid water) and when the fuel is a gaseous fuel the additional fluid is preferably a gaseous fluid (for example the fuel can be natural gas or methane and the additional fluid nitrogen).
Advantageously, since when the amount of fuel becomes low the additional flow is injected with it, no fluctuating amounts of fuel are injected into the combustion device; this prevents or hinders thermal and mechanical pulsations.
In the following some embodiments of the invention are described in detail.
In
This example is similar to the first example. In particular, in this second example two speeds for the fuel regulation are provided: a slow speed during water supply and a faster speed when no water supply is provided.
Also this example is similar to the first example and, in particular, water 52 and nitrogen 54 are supplied when a first parameter of both the gas premix and the oil premix 50, 51 are below their critical value.
Also this example is similar to the first example and, in particular, supply of water starts before premix oil supply.
Naturally, the features described may be independently provided from one another.
In practice the materials used and the dimensions can be chosen at will according to requirements and to the state of the art.
Number | Date | Country | Kind |
---|---|---|---|
11179344.4 | Aug 2011 | EP | regional |