Engines may be configured with various fuel systems used to deliver a desired amount of fuel to an engine for combustion. One type of fuel system includes a port fuel injector and a direct fuel injector for each engine cylinder. The port fuel injectors may be operated to improve fuel vaporization and reduce engine emissions, as well as to reduce pumping losses & fuel consumption at low loads. The direct fuel injectors may be operated during higher load conditions to improve engine performance and fuel consumption at higher loads. Additionally, both port fuel injectors and direct injectors may be operated together under some conditions to leverage advantages of both types of fuel delivery.
Engines operating with both port fuel injectors and direct injectors may operate for extended periods without using the direct injectors. The direct injectors may be coupled to a high-pressure fuel rail upstream of a high-pressure fuel pump. During periods of non-operation, a one-way check valve may result in high-pressure fuel being trapped in the high-pressure fuel rail. Any increase in temperature of the fuel would then result in an increased fuel pressure, due to the closed and rigid nature of the fuel rail. This increased temperature and pressure may in turn affect the durability of both the direct fuel injectors and the high-pressure fuel pump.
To reduce degradation of the direct fuel injectors and high-pressure fuel pump, a constant or periodic amount of fuel may be injected from the direct fuel injectors during operation of the vehicle. However, the inventors herein have recognized problems with such an approach. As one example, it may be desirable to run maximum sustained PFI operation for improved fuel economy and reduced emissions. In another example, the direct fuel injectors may be coupled to a limited supply of fuel, which may thus be depleted and not be available when needed if fuel is constantly injected. Further, this approach may not significantly impact component durability if fuel is injected below a threshold pressure or temperature over which the likelihood of degradation increases.
Such issues may be addressed by, in one example a method, comprising: operating an engine cylinder with fuel from a first injector and not a second injector and activating the second injector in response to a rail pressure increase of a fuel rail, the fuel rail coupled to the second injector. In this way, degradation of the second injector may be reduced by activating the second injector and allowing fuel flow through the second injector to reduce the pressure and temperature of the second fuel system components. Further, by monitoring rail pressure increases of a relative fixed-volume fuel rail, temperature changes corresponding to pressure changes can be identified so that relevant temperature information is obtained.
In another example, a fuel system for an internal combustion engine, comprising: a group of direct fuel injectors in communication with a group of cylinders, a first fuel rail in communication with the group of direct injectors, a high-pressure fuel pump in communication with the first fuel rail, and a control system configured with instructions for: during a first condition, increasing a flow of fuel through the first fuel rail when a temperature change in a fuel included in the first fuel rail exceeds a threshold, the temperature change based on a rail pressure change. In this way, if an engine is operating off a port-injection fuel system and not the direct injection fuel system, the direct injection fuel system may be activated even if not needed in order to cool the direct injection fuel system.
In yet another example, a method, comprising: operating an engine cylinder with fuel from a first injector and not a second injector, and activating a fuel pump coupled to the second injector in response to a rail pressure increase of a fuel rail, the fuel rail coupled between the second injector and the pump. In this way, fuel can be circulated through the fuel rail responsive to increases in rail pressure.
The above advantages and other advantages, and features of the present description will be readily apparent from the following Detailed Description when taken alone or in connection with the accompanying drawings.
It should be understood that the summary above is provided to introduce in simplified form a selection of concepts that are further described in the detailed description. It is not meant to identify key or essential features of the claimed subject matter, the scope of which is defined uniquely by the claims that follow the detailed description. Furthermore, the claimed subject matter is not limited to implementations that solve any disadvantages noted above or in any part of this disclosure.
The present description relates to systems and methods for operating a direct fuel injector within an engine system where more than one fuel injectors are coupled to an engine cylinder. In one non-limiting example, the engine may be configured as illustrated in
Cylinder 14 can receive intake air via a series of intake air passages 142, 144, and 146. Intake air passage 146 can communicate with other cylinders of engine 10 in addition to cylinder 14. In some embodiments, one or more of the intake passages may include a boosting device such as a turbocharger or a supercharger. For example,
Exhaust passage 148 can receive exhaust gases from other cylinders of engine 10 in addition to cylinder 14. Exhaust gas sensor 128 is shown coupled to exhaust passage 148 upstream of emission control device 178. Sensor 128 may be any suitable sensor for providing an indication of exhaust gas air/fuel ratio such as a linear oxygen sensor or UEGO (universal or wide-range exhaust gas oxygen), a two-state oxygen sensor or EGO (as depicted), a HEGO (heated EGO), a NOx, HC, or CO sensor. Emission control device 178 may be a three way catalyst (TWC), NOx trap, various other emission control devices, or combinations thereof.
Each cylinder of engine 10 may include one or more intake valves and one or more exhaust valves. For example, cylinder 14 is shown including at least one intake poppet valve 150 and at least one exhaust poppet valve 156 located at an upper region of cylinder 14. In some embodiments, each cylinder of engine 10, including cylinder 14, may include at least two intake poppet valves and at least two exhaust poppet valves located at an upper region of the cylinder.
Intake valve 150 may be controlled by controller 12 via actuator 152. Similarly, exhaust valve 156 may be controlled by controller 12 via actuator 154. During some conditions, controller 12 may vary the signals provided to actuators 152 and 154 to control the opening and closing of the respective intake and exhaust valves. The position of intake valve 150 and exhaust valve 156 may be determined by respective valve position sensors (not shown). The valve actuators may be of the electric valve actuation type or cam actuation type, or a combination thereof. The intake and exhaust valve timing may be controlled concurrently or any of a possibility of variable intake cam timing, variable exhaust cam timing, dual independent variable cam timing or fixed cam timing may be used. Each cam actuation system may include one or more cams and may utilize one or more of cam profile switching (CPS), variable cam timing (VCT), variable valve timing (VVT) and/or variable valve lift (VVL) systems that may be operated by controller 12 to vary valve operation. For example, cylinder 14 may alternatively include an intake valve controlled via electric valve actuation and an exhaust valve controlled via cam actuation including CPS and/or VCT. In other embodiments, the intake and exhaust valves may be controlled by a common valve actuator or actuation system, or a variable valve timing actuator or actuation system.
Cylinder 14 can have a compression ratio, which is the ratio of volumes when piston 138 is at bottom center to top center. Conventionally, the compression ratio is in the range of 9:1 to 10:1. However, in some examples where different fuels are used, the compression ratio may be increased. This may happen for example when higher octane fuels or fuels with higher latent enthalpy of vaporization are used. The compression ratio may also be increased if direct injection is used due to its effect on engine knock.
In some embodiments, each cylinder of engine 10 may include a spark plug 192 for initiating combustion. Ignition system 190 can provide an ignition spark to combustion chamber 14 via spark plug 192 in response to spark advance signal SA from controller 12, under select operating modes. However, in some embodiments, spark plug 192 may be omitted, such as where engine 10 may initiate combustion by auto-ignition or by injection of fuel as may be the case with some diesel engines.
In some embodiments, each cylinder of engine 10 may be configured with one or more fuel injectors for providing fuel thereto. As a non-limiting example, cylinder 14 is shown including two fuel injectors 166 and 170. Fuel injector 166 is shown coupled directly to cylinder 14 for injecting fuel directly therein in proportion to the pulse width of signal FPW-1 received from controller 12 via electronic driver 168. In this manner, fuel injector 166 provides what is known as direct injection (hereafter referred to as “DI”) of fuel into combustion cylinder 14. While
Fuel injector 170 is shown arranged in intake passage 146, rather than in cylinder 14, in a configuration that provides what is known as port injection of fuel (hereafter referred to as “PFI”) into the intake port upstream of cylinder 14. Fuel injector 170 may inject fuel in proportion to the pulse width of signal FPW-2 received from controller 12 via electronic driver 171. Fuel may be delivered to fuel injector 170 by fuel system 172.
Fuel may be delivered by both injectors to the cylinder during a single cycle of the cylinder. For example, each injector may deliver a portion of a total fuel injection that is combusted in cylinder 14. Further, the distribution and/or relative amount of fuel delivered from each injector may vary with operating conditions such as described herein below. The relative distribution of the total injected fuel among injectors 166 and 170 may be referred to as a first injection ratio. For example, injecting a larger amount of the fuel for a combustion event via (port) injector 170 may be an example of a higher first ratio of port to direct injection, while injecting a larger amount of the fuel for a combustion event via (direct) injector 166 may be a lower first ratio of port to direct injection. Note that these are merely examples of different injection ratios, and various other injection ratios may be used. Additionally, it should be appreciated that port injected fuel may be delivered during an open intake valve event, closed intake valve event (e.g., substantially before an intake stroke, such as during an exhaust stroke), as well as during both open and closed intake valve operation. Similarly, directly injected fuel may be delivered during an intake stroke, as well as partly during a previous exhaust stroke, during the intake stroke, and partly during the compression stroke, for example. Further, the direct injected fuel may be delivered as a single injection or multiple injections. These may include multiple injections during the compression stroke, multiple injections during the intake stroke, or a combination of some direct injections during the compression stroke and some during the intake stroke. When multiple direct injections are performed, the relative distribution of the total directed injected fuel between an intake stroke (direct) injection and a compression stroke (direct) injection may be referred to as a second injection ratio. For example, injecting a larger amount of the direct injected fuel for a combustion event during an intake stroke may be an example of a higher second ratio of intake stroke direct injection, while injecting a larger amount of the fuel for a combustion event during a compression stroke may be an example of a lower second ratio of intake stroke direct injection. Note that these are merely examples of different injection ratios, and various other injection ratios may be used.
As such, even for a single combustion event, injected fuel may be injected at different timings from a port and direct injector. Furthermore, for a single combustion event, multiple injections of the delivered fuel may be performed per cycle. The multiple injections may be performed during the compression stroke, intake stroke, or any appropriate combination thereof.
As described above,
Fuel injectors 166 and 170 may have different characteristics. These include differences in size, for example, one injector may have a larger injection hole than the other. Other differences include, but are not limited to, different spray angles, different operating temperatures, different targeting, different injection timing, different spray characteristics, different locations etc. Moreover, depending on the distribution ratio of injected fuel among injectors 170 and 166, different effects may be achieved.
Fuel system 172 may include one fuel tank or multiple fuel tanks. In embodiments where fuel system 172 includes multiple fuel tanks, the fuel tanks may hold fuel with the same fuel qualities or may hold fuel with different fuel qualities, such as different fuel compositions. These differences may include different alcohol content, different octane, different heat of vaporizations, different fuel blends, and/or combinations thereof etc. In one example, fuels with different alcohol contents could include gasoline, ethanol, methanol, or alcohol blends such as E85 (which is approximately 85% ethanol and 15% gasoline) or M85 (which is approximately 85% methanol and 15% gasoline). Other alcohol containing fuels could be a mixture of alcohol and water, a mixture of alcohol, water and gasoline etc. In some examples, fuel system 172 may include a fuel tank holding a liquid fuel, such as gasoline, and also include a fuel tank holding a gaseous fuel, such as CNG. Fuel injectors 166 and 170 may be configured to inject fuel from the same fuel tank, from different fuel tanks, from a plurality of the same fuel tanks, or from an overlapping set of fuel tanks.
Controller 12 is shown in
Storage medium read-only memory 110 can be programmed with computer readable data representing instructions executable by processor 106 for performing the methods described below as well as other variants that are anticipated but not specifically listed. An example routine that may be performed by the controller is described at
Cylinders 14 may be configured as part of cylinder head 201. In
Cylinder head 201 is shown coupled to fuel system 172. Cylinder 14 is shown coupled to fuel injectors 166 and 170. Although only one cylinder is shown coupled to fuel injectors, it is to be understood that all cylinders 14 included in cylinder head 201 may also be coupled to one or more fuel injectors.
Fuel injector 166 is depicted as a direct fuel injector. Fuel injector 166 may be coupled to first fuel rail 205. Fuel rail 205 may include pressure sensor 213. Fuel rail 166 may be further coupled to first fuel line 220. Fuel line 220 may be further coupled to one or more fuel tanks, fuel pumps, pressure regulators, etc.
Fuel injector 170 is depicted as a port fuel injector. Fuel injector 170 may be coupled to second fuel rail 206. Fuel rail 206 may include pressure sensor 214. Fuel rail 206 may be further coupled to second fuel line 221. Fuel line 221 may be further coupled to one or more fuel tanks, fuel pumps, pressure regulators, etc.
At 304, method 300 may include determining if the current net fuel flow through a direct fuel injector is greater than 0. Determining the current net fuel flow may include evaluating the status of each direct fuel injector 166, and/or the status of fuel flow through first fuel rail 205 as shown in
At 306, method 300 may include reading the pressure of a direct injection fuel rail. For example, controller 12 may assess the fuel pressure in fuel rail 205 by reading a first pressure with pressure sensor 213. Herein, this first pressure measurement will be referred to as P1. In some embodiments, P1 may be compared to a threshold pressure, and method 300 may proceed if P1 is greater than the threshold pressure.
At 307, method 300 may include maintaining combustion with the port injection fuel system. The port injection fuel system may be used throughout the running duration of method 300 in order to maintain combustion during periods where the direct injection fuel system is not in use.
At 308, method 300 may include determining whether the direct injection fuel flow has been maintained at 0 without increasing above 0 in the time since pressure measurement P1 was taken. In some embodiments, a controller may be configured to prevent direct injection fuel flow while method 300 is being implemented. If direct injection fuel flow has increased above 0, method 300 may proceed. At 309, method 300 may include resuming injection from the first and second fuel rails as a function of engine operating conditions. Both port injection and direct injection systems may be used, either alone or in tandem. Injection flow rates and injection timing may be the same for each cylinder, or determined individual for each cylinder based on engine operating conditions. In some embodiments, method 300 may end upon the initiation or detection of direct injection fuel flow.
At 310, if direct injection fuel flow has been maintained since pressure measurement P1 was taken, method 300 may include reading the pressure of a direct injection fuel rail. For example, controller 12 may assess the fuel pressure in fuel rail 205 by reading a second pressure with pressure sensor 213. Herein, this second pressure measurement will be referred to as P2.
In some embodiments, a controller may be configured to take the second pressure measurement after a predetermined amount of time after the first pressure measurement. In some embodiments, additional pressure measurements may be taken in addition to the first and second pressure measurements.
At 312, method 300 may include calculating a change in fuel temperature (ΔT) as a function on the values of P1 and P2. For example, the calculation may include an equation: (P2−P1)=(k1/k2)*(T2−T1), where k1 is a coefficient of thermal expansion and k2 is an isothermal compressibility coefficient. Coefficients k1 and k2 may have different values depending on the fuel qualities and fuel composition. In some embodiments, a value for T1 may be determined immediately following the assessment of P1, and a value for T2 may be determined immediately following the assessment of P2. In embodiments where the fuel rail is a rigid body, the fuel rail volume may be assumed to be constant for predetermined ranges of pressures and/or temperatures.
At 314, method 300 may include comparing ΔT to a predetermined threshold. If is less than the predetermined threshold, method 300 may end. In some examples, method 300 may return to 310 and may include taking one or more additional pressure readings. If is greater than the predetermined threshold, method 300 may proceed.
At 315, method 300 may include determining whether the capacity of a cooling system is at a maximum. In one example, method 300 may determine if it is possible to cool a fuel rail by increasing the flow of coolant or by lowering the temperature of coolant. If the cooling system is not at a maximum, method 300 may proceed to 316. At 316, method 300 may include adjusting a parameter of coolant flow. The parameter of coolant flow may be one or more of the flow rate of coolant, the temperature of coolant, the source of coolant, etc. When coolant flow has been adjusted, method 300 may return to 314 and determine if the temperature of the fuel rail has decreased to a value below a threshold value. If the fuel rail temperature has decreased to a value below the threshold value, method 300 may end. If the fuel rail temperature remains above the threshold value, method 300 may proceed to 315 and may include determining whether there the coolant capacity has reached a maximum value. If the coolant capacity has reached a maximum value, method 300 may proceed.
At 317, method 300 may include activating a direct fuel injector system. Activating a direct fuel injector system may include activating one of more direct fuel injectors, and may further include activating a fuel pump. The direct fuel injector system may be activated for a predetermined amount of time, or may be instructed to pump a predetermined amount of fuel through the direct fuel injectors.
Method 300 or other equivalent methods may be independently or as a subroutine for another engine operating method. Method 300 may be run repeatedly throughout the course of operating a vehicle, or may be run when specific operating conditions dictate.
At time t0, DI fuel flow rate is greater than 0. Between time t0 and time t1, the DI fuel flow rate alternates between being greater than 0 and being equal to 0. During periods where there DI fuel flow rate is equal to 0, DI fuel rail pressure may increase. Due to the rigid nature of the fuel rail, DI fuel rail temperature may increase accordingly with fuel rail pressure.
From time t1 to time t2, DI fuel flow is equal to 0. In other words, the direct injection system is not in use, and the engine may maintain combustion by operating the port fuel injection system. The DI fuel rail pressure and temperature rise from time t1 to time t2, where DI fuel rail temperature becomes greater than threshold 408. In response to the DI fuel rail temperature exceeding threshold 408, DI fuel flow is commanded to be greater than 0. Operation of the direct injection system continues from time t2 to time t3, and the increase in fuel flow through the direct injector is sufficient to reduce the temperature and pressure of the DI fuel rail such that the temperature of the DI fuel rail drops below threshold 408.
From time t4 to time t5, DI fuel flow is equal to 0. The DI fuel rail pressure and temperature rise from time t4 to time t5, where DI fuel rail temperature becomes greater than threshold 408. At time t5, the flow rate of coolant to the fuel rail may be increased, as discussed above and with regards to
From time t5 to time t6, DI fuel flow remains equal to 0. The DI fuel rail pressure and temperature rise from time t5 to time t6, where DI fuel rail temperature becomes greater than threshold 408. At time t6, a controller may determine that the coolant system is at maximum capacity. As such, DI fuel flow is commanded to be greater than 0. Operation of the direct injection system continues from time t6 to time t7, and the increase in fuel flow through the direct injector is sufficient to reduce the temperature and pressure of the DI fuel rail such that the temperature of the DI fuel rail drops below threshold 408.
In some examples, the problems described above may be addressed by a method of operating an engine fuel system, comprising: during a first condition, measuring a first pressure of a first fuel rail coupled to a direct fuel injector at a first point in time and measuring a second pressure of the first fuel rail at a second point in time following the first point in time, determining a change in fuel temperature as a function of the first and second pressures, and enabling fuel flow through the direct fuel injector system if the change in fuel temperature is greater than a first threshold. In some examples, the first condition may include a bulk fuel flow through the direct fuel injector being substantially equal to zero, and enabling fuel flow through the direct fuel injector system may include operating a first fuel pump and activating a direct fuel injector. In some examples, a port fuel injection system may be in use when the direct fuel system is not in use, and the port fuel injector system may be coupled to a second fuel rail and second fuel pump, where the first fuel pump may be a higher pressure fuel pump and the second fuel pump may be a lower pressure fuel pump. The port fuel injector system may be coupled to a first fuel tank and the direct fuel injector system may be coupled to a second fuel tank. In some examples, the first fuel tank may contain a fuel with a different composition than a fuel contained in the second fuel tank.
It will be appreciated that the configurations and methods disclosed herein are exemplary in nature, and that these specific embodiments are not to be considered in a limiting sense, because numerous variations are possible. For example, the above technology can be applied to V-6, I-4, I-6, V-12, opposed 4, and other engine types. The subject matter of the present disclosure includes all novel and non-obvious combinations and sub-combinations of the various systems and configurations, and other features, functions, and/or properties disclosed herein.
The following claims particularly point out certain combinations and sub-combinations regarded as novel and non-obvious. These claims may refer to “an” element or “a first” element or the equivalent thereof. Such claims should be understood to include incorporation of one or more such elements, neither requiring nor excluding two or more such elements. Other combinations and sub-combinations of the disclosed features, functions, elements, and/or properties may be claimed through amendment of the present claims or through presentation of new claims in this or a related application. Such claims, whether broader, narrower, equal, or different in scope to the original claims, also are regarded as included within the subject matter of the present disclosure.