The application relates to a method for operating a drive-in device for fastening elements.
Devices of this kind generally comprise a drive-in element for driving in a fastening element that is arranged in a drive-in channel, and a drive means for the drive-in element. In the case of devices comprising a magazine, the fastening elements are successively transported into the drive-in channel, using a transport means. When all the fastening elements in the magazine are used up without a user of the drive-in device being aware of this, the user will initially attempt to perform a drive-in procedure, and will reload further fastening elements only after identifying the empty magazine. It is therefore desirable to operate a drive-in device such that the time required for unsuccessful drive-in attempts of this kind is reduced.
In the case of a method for operating a drive-in device for fastening elements comprising a drive-in channel, a drive-in element which is intended for driving a fastening element arranged in the drive-in channel into a substrate, a drive means which is intended for driving the drive-in element onto the fastening element arranged in the drive-in channel, the drive means comprising a motor, a magazine for fastening elements, a transport means which is intended for successively transporting fastening elements, provided in the magazine, into the drive-in channel, and a detection means for querying whether and/or how many fastening elements are present in the magazine, the object is achieved in that the motor is operated in accordance with a standard model if the detection means detects a specified minimum number of fastening elements in the magazine, and in that the motor is operated in accordance with a deviating, special model if the detection means does not detect any fastening elements in the magazine or detects a number of fastening elements in the magazine that is below the specified minimum number.
Owing to the deviation of the special model from the standard model, a user of the drive-in device immediately identifies that the fastening elements are immediately used up or will be used up following the next drive-in process, and the magazine has to be filled. The user preferably identifies this acoustically and/or haptically.
According to an advantageous embodiment, the special model differs from the standard model by a temporal spacing following an event that triggers the operation of the motor. The event triggering the operation of the motor is preferably a conclusion of a drive-in process of the drive-in device, activation of the drive-in device, or raising of the drive-in device from a substrate.
According to an advantageous embodiment, the special model differs from the standard model by a temporal duration of the operation of the motor, by a speed of the motor, and/or by a deviating sequence of individual operating phases having a different temporal spacing and/or different duration and/or different speed of the motor.
According to an advantageous embodiment, the drive-in device comprises a contact means for querying whether the work tool is in contact with a substrate, the contact means being located in a contact position when the work tool is in contact with a substrate. The contact means preferably permits driving of the drive-in element onto the fastening element only in the contact position.
According to an advantageous embodiment, the motor is operated in order to transfer the drive means into a state ready for drive-in operations, proceeding from which state the drive-in element is driven towards the fastening element. The drive-in device preferably comprises a mechanical energy storage means, the motor being operated in order to charge the mechanical energy storage means.
According to an advantageous embodiment, the motor is operated in order to drive the drive-in element towards the fastening element.
According to an advantageous embodiment, the motor is an electric motor that is supplied with electrical energy from an electrochemical energy storage means.
According to an advantageous embodiment, the detection means detects the presence of a fastening element at a specified location in the magazine or the drive-in channel.
According to an advantageous embodiment, the transport means comprises a slide for the fastening elements in the magazine, the detection means detecting a position of the slide.
According to an advantageous embodiment, the detection means performs the query regarding whether and/or how many fastening elements are present in the magazine in a capacitive, inductive, magnetic, optical, acoustic or electromechanical manner.
Embodiments of a device for driving a fastening element into a substrate will be explained in greater detail in the following, on the basis of examples and with reference to the drawings. In the drawings:
The drive-in device 10 further comprises a drive-in channel 700 for the fastening elements, and a contact means 750. The contact means permits driving of the drive-in element 100 onto the fastening element only in the contact position. The drive-in device 10 further comprises a magazine 40 for fastening elements and a transport means which is intended for successively transporting fastening elements, present in the magazine 40, into the drive-in channel 700. Furthermore, the housing 20 comprises a handle 30 on which a manual switch 35 is arranged. The control means 500 communicates with the manual switch 35 and with a plurality of sensors 990, 992, 994, 996, 998, 1000 in order to detect the operating state of the drive-in device 10. The sensors 990, 992, 994, 996, 998, 1000 each comprise a Hall probe which detects the movement of a magnet armature (not shown) that is arranged on, in particular fastened to, the element to be detected in each case.
The guide channel sensor 990 detects a forwards movement of the contact means 750 which indicates that the guide channel 700 has been removed from the drive-in device 10. The contact sensor 992 detects a backwards movement of the contact means 750 which indicates that the drive-in device 10 is in contact with a substrate. The pulley bracket sensor detects a movement of the front pulley bracket 281 which indicates whether the spring 200 is pre-tensioned. The detent sensor 996 detects a movement of the detent 800 which indicates whether the coupling means 150 is held in the closed state thereof. The spindle sensor 998 detects whether the spindle nut 320 or a return rod, fastened to the spindle nut 320, is in the rearmost position thereof. Finally, a detection means 1000 designed as a slide sensor detects whether a slide, arranged in the magazine 40, is in the uppermost position thereof in
After a fastening element has been driven forwards, i.e. towards the left in the drawing, into a substrate by means of the drive-in element 100, the drive-in element 100 is located in the drive-in position thereof. The front spring element 210 and the rear spring element 220 are in the slackened state, in which they do in fact still have some residual tension. The front pulley bracket 281 is in the frontmost position thereof in the operating procedure, and the rear pulley bracket 282 is in the rearmost position thereof in the operating procedure. The spindle nut 320 is located at the front end of the spindle 310. Owing to the spring elements 210, 220 that may be slackened to a residual tension, the belt 270 is substantially unloaded.
As soon as the control means 500 had identified, by means of a sensor, that the drive-in element 100 is in the setting position thereof, the control means 500 triggers a return process in which the drive-in element 100 is conveyed into the starting position thereof. For this purpose, the motor 480 rotates the spindle 310 in a first rotation direction, by means of the transmission 400, such that the rotation-resistant spindle nut 320 is moved backwards.
In this case, the return rods engage in the return studs of the drive-in element 100 and thus likewise convey the drive-in element 100 backwards. In this case, the drive-in element 100 carries along the belt 270, as a result of which the spring elements 210, 220 are not tensioned, however, because the spindle nut 320 likewise carries along the belt 270 towards the rear, and in this case releases the same amount of belt length over the pulleys of the rear pulley bracket 282 as the piston draws in between the pulleys of the front pulley bracket 281. The belt 270 thus remains substantially unloaded during the return process.
The drive-in element 100 is then located in the starting position thereof, and the coupling plug-in portion thereof is coupled with the coupling means 150. The front spring element 210 and the rear spring element 220 are still in the respective slackened states thereof, the front pulley bracket 281 is in the frontmost position thereof, and the rear pulley bracket 282 is in the rearmost position thereof. The spindle nut 320 is located at the rear end of the spindle 310. Owing to the slackened spring elements 210, 220, the belt 270 is still substantially unloaded.
If the drive-in device is now raised from the substrate, such that the contact means 750 is shifted forwards relative to the drive-in channel 700, the control means 500 triggers a tensioning process in which the spring elements 210, 220 are tensioned. For this purpose, the motor rotates the spindle 310 in a second rotation direction that opposes the first rotation direction, by means of the transmission 400, such that the rotation-resistant spindle nut 320 is moved forwards. In this case, the coupling means 150 retains the coupling plug-in portion of the drive-in element 100, such that the belt length that is drawn in between the rear pulleys by means of the spindle nut 320 cannot be released by the piston. The pulley brackets 281, 282 are therefore moved towards one another and the spring elements 210, 220 are tensioned.
The drive-in element 100 is then again located in the starting position thereof, and the coupling plug-in portion thereof is coupled with the coupling means 150. The front spring element 210 and the rear spring element 220 are tensioned, the front pulley bracket 281 is in the rearmost position thereof, and the rear pulley bracket 282 is in the frontmost position thereof. The spindle nut 320 is located at the front end of the spindle 310. The belt 270 deflects the tensioning force of the spring elements 210, 220 at the pulleys of the pulley brackets 281, 282 and transfers the tensioning force to the drive-in element 100 which is retained by the coupling means 150, against the tensioning force. The drive-in device is now ready for a drive-in process. As soon as a user pulls the trigger 34, the coupling means 150 releases the drive-in element 100, which then transmits the tensioning energy of the spring elements 210, 220 to a fastening element and drives the fastening element into the substrate.
Further arrows and rectangles 1072 and 1073 indicate a voltage measurement and a current measurement. A further rectangle 1074 indicates a disconnection means. A further rectangle indicates a B6-bridge 1075. In this case, this is a 6-pulse bridge circuit comprising semiconductor elements for controlling the electric drive motor 1020. This is preferably actuated by means of driver components, which are in turn preferably actuated by a controller. In addition to the appropriate actuation of the bridge, a further advantage of integrated driver components of this kind is that they bring the switching elements of the B6-bridge into a defined state in the case of an undervoltage occurring.
A further rectangle 1076 indicates a temperature probe which communicates with the disconnection means 1074 and the control means 1024. A further arrow indicates that the control means 1024 outputs information to the display 1051. A further double arrow indicates that the control means 1024 communicates with the interface 1052 and with a further service interface 1077.
A further rectangle 1078 indicates a fixing brake which is actuated by the control means 1024. The fixing brake 1078 is used to slow movements when relaxing the energy storage means 1010 and/or to keep the energy storage means in the tensioned or charged state. For this purpose, the fixing brake 1078 can interact with a belt drive or transmission (not shown).
A further rectangle 1079 indicates a detection means for querying whether and/or how many fastening elements are present in the magazine. If the detection means 1079 detects a specified minimum number of fastening elements in the magazine, the control means 1024 operates the motor in accordance with a standard model in order to transfer the drive means into the state thereof in which it is ready for drive-in operations. For example, operation of the motor is started immediately after the drive-in device has been raised from a substrate following a drive-in process. If, in contrast, the detection means 1079 does not detect any fastening elements in the magazine or detects a number of fastening elements therein that is below the specified minimum number, the control means 1024 operates the motor in accordance with a special model that deviates from the standard model. For example, operation of the motor is started only following a delay, after the drive-in device has been raised from a substrate following a drive-in process. Alternatively, the motor is initially operated at an increased or reduced speed, after the drive-in device has been raised from a substrate following a drive-in process.
The drive-in device 410 furthermore comprises a detection means 460, which detects a position of the slide 420. The detection means 460 comprises an electrical switch 470 which is closed by an actuation element 480 of the slide 420 when the slide 420 has reached the uppermost position thereof in
In an embodiment that is not shown, the detection means performs the query regarding whether and/or how many fastening elements are present in the magazine in a capacitive, inductive, magnetic, optical, acoustic or electromechanical manner.
The invention has been described on the basis of the example of a spring nailer. It is noted, however, that the invention can also be implemented in other manners. In particular, gas, powder, pneumatically, hydraulically or electromagnetically operated drive-in devices can be achieved, in which a drive means comprises a motor that is operated by combustion power, pneumatically, hydraulically or electrically and which is operated within the meaning of the invention, for example in order to return a drive-in element into a starting position following a drive-in process or to drive a fan. The invention can likewise be implemented in a screwdriver, in particular a cordless screwdriver.
Number | Date | Country | Kind |
---|---|---|---|
17161823.4 | Mar 2017 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2018/056805 | 3/19/2018 | WO | 00 |