1. Field of the Invention
The present invention relates to the field of power plant technology. It pertains to a method for operating a (stationary) gas turbine as well as to a gas turbine for implementing the method.
2. Brief Description of the Related Art
A gas turbine with reheating (reheat gas turbine) is known (see, for example, the U.S. Pat. No. 5,577,378 or “State-of-the-art gas turbines—a brief update,” ABB Review February 1997,
The machinery architecture of the gas turbine of Type GT26 is unique and is exceptionally well-suited to realizing a concept that is the subject matter of the present invention, because:
The principle of the known gas turbine with reheating is shown in
The manner in which the unit works is as follows: air is drawn in from the low pressure compressor 13 via an air inlet 20, and is compressed initially to a level of intermediate pressure (ca. 20 bar). The high pressure compressor 14 then further compresses the air to a level of high pressure (ca.32 bar). Cooling air is diverted at both the level of intermediate pressure and at the level of high pressure and cooled down in pertinent OTC coolers (OTC=Once Through Cooler) 23 and 24 and conducted further to the combusters 18 and 19 and turbines 16, 17 for cooling purposes. The remaining air from the high pressure compressor 14 is led to the high pressure combustor 18, and heated there by the combustion of a fuel introduced by fuel feedline 21. The resultant flue gas is then expanded in the downstream high pressure turbine 16 to an intermediate level of pressure as it performs work. After expansion, the flue gas is heated again in the reheat combustor 19 by the combustion of a fuel introduced by fuel feedline 22 before it is expanded in the downstream low pressure turbine 17, performing additional work in the process.
The cooling air, which flows through the cooling lines 25, 26, is sprayed in at suitable points of the combustors 18, 19 and turbines 16, 17 to limit the material temperatures to a reasonable degree. The flue gas coming out of the low pressure turbine 17 is sent through a heat recovery steam generator 27 (HRSG) to generate steam, which flows through a steam turbine 29 within a water-steam circuit, and performs additional work there. After flowing through the heat recovery steam generator 27, the flue gas is finally given off to the outside through a flue gas line 28. The OTC coolers 23, 24 are part of the water-steam circuit; superheated steam is generated at their outlets.
Due to the two combustions in the combustors 18 and 19, which are independent of each other and follow each other in sequence, great operational flexibility is achieved; the temperatures in the combustors can be adjusted in such a way that the maximum degree of efficiency is achieved within the existing limits. The low flue gas levels of the sequential combustion system are the result of the inherently low emission levels that can be achieved in the case of reheating (under certain conditions, the second combustion even leads to a consumption of NOx).
On the other hand, combined cycle power plants with single stage combustion in the gas turbines are known (see, for example, U.S. Pat. No. 4,785,622 or U.S. Pat. No. 6,513,317 B2), in which a coal gasification unit is integrated in order to provide the requisite fuel for the gas turbine in the form of syngas, which is recovered from coal. Such combined cycle power plants are designated IGCC (Integrated Gasification Combined Cycle) plants.
The present invention now proceeds from the recognition that due to the use of gas turbines with reheating in an IGCC plant, the advantages of this type of gas turbine can be made usable for the plant in a particular manner.
One aspect of the present invention includes a method for the operation of a gas turbine, especially one that works in concert with a coal gasifier, which is characterized by an improved degree of efficiency, which also exhibits, in particular, the advantages of intermediate cooling, as well as to create a gas turbine for implementing the method.
It is particularly advantageous that a gas turbine with reheating be used in a gas turbine unit that works with syngas from a coal gasifier, which comprises two combustors and two turbines, in which, in the first combustor, syngas is burned using the compressed air, and the resultant hot gases are expanded in the first turbine, and in which syngas is burned in the second combustor, using the gases that come from the first turbine, and the resultant hot gases are expanded in the second turbine and the nitrogen that occurs in the separation of the air is led to the gas turbine to be compressed again. Due to the addition of the comparatively cold nitrogen to the compressor, the compressor air is cooled, and the result is a kind of compressor intermediate cooling that is associated with all the advantages of such intermediate cooling. In addition to the advantages with respect to the thermodynamic degree of efficiency, the temperature in the compressor is reduced, which leads to a reduction of the quantity of cooling air that is required, or renders the additional cooling of the cooling air unnecessary.
One embodiment of the method according to the invention is characterized in that the gas turbine comprises an first compressor for the compression of drawn in air to an first pressure stage and a second compressor for the further compression of the air from the first pressure stage to a second, higher pressure stage, that a portion of the air coming from the first compressor is separated into oxygen and nitrogen and that the nitrogen that occurs in the course of this separation is led to the second compressor to be compressed.
In the process, the nitrogen preferably undergoes pre-compression in another compressor before it is led to the second compressor.
The pre-compressed nitrogen can, in the process, be led to the inlet of the second compressor, in particular.
Another embodiment of the method according to the invention is characterized in that the gas turbine exhibits an first compressor for the compression of drawn in air to an first pressure stage and a second compressor for the further compression of the air from the first pressure stage to a second, higher pressure stage, that a portion of the air coming out of the first compressor is separated into oxygen and nitrogen, and that the nitrogen that occurs in the course of this separation is led to the first compressor to be compressed.
In the process, the nitrogen can be conducted to the first compressor at an intermediate stage. Alternatively, however, it can also be conducted to the inlet of the first compressor.
An embodiment of the gas turbine according to the invention is characterized in that two compressors, one connected behind the other, are provided, that the nitrogen line is led back to the second compressor, and that an additional compressor is provided in the nitrogen line.
In particular, the nitrogen line can be led back to the inlet of the second compressor.
Another embodiment is characterized in that two compressors, one connected behind the other, are provided and that the nitrogen line is led back to the first compressor, either to the inlet of the first compressor or to an intermediate stage of the first compressor.
Preferably, the air separation unit exhibits an oxygen line on the same side of its outlet for the purpose of giving off the oxygen that occurs in the course of the separation, which is led to a unit for the purpose of generating syngas by means of coal gasification in which a syngas feed line transports the syngas that is generated from the syngas generation unit to the combustors.
In what follows, the invention is to be illustrated in greater detail by virtue of the embodiment examples in conjunction with the drawing.
In
Oxygen (O2), which is recovered in an air separation unit 32, and introduced via an oxygen line 32a, is used to gasify the coal in the coal gasifier 34. The air separation unit 32 receives compressed air from the outlet of the low pressure compressor 13. The nitrogen (N2), which also occurs in the separation, is led, for example, to the low pressure combustor 19 via nitrogen line 32b.
To cool the components of the combustors 18, 19 and turbines 16, 17 that have been exposed to hot gas, compressed cooling air is tapped off at the outlets of the two compressors 13 and 14, cooled off in a topped OTC cooler 23 or 24 and then led to the points to be cooled via the corresponding cooling lines 25 and 26.
At the outlet of the low pressure turbine 17, a heat recovery steam generator 27 is provided, which, together with a steam turbine 29 that is connected, is part of a water-steam circuit. The flue gas that emerges from the heat recovery steam generator 27 is released to the outside via a flue gas line 28.
In such a plant configuration, according to
According to
In the alternative configuration that is depicted in
To summarize, principles of the present invention include:
In all three instances, the cool nitrogen cools the compressor air, thus representing a kind of “intermediate compressor cooling,” with which all the known advantages of intermediate cooling are associated.
A prerequisite for the realization of this concept is that in both combustors of the gas turbine, undiluted coal gas (without the addition of N2) can be used. Since the separation of the air provides relatively cold nitrogen, and the nitrogen is not needed for dilution in the combustor (as this is shown in
While the invention has been described in detail with reference to exemplary embodiments thereof, it will be apparent to one skilled in the art that various changes can be made, and equivalents employed, without departing from the scope of the invention.
This application claims priority under 35 U.S.C. §119 to U.S. provisional application No. 60/706,776, filed 10 Aug. 2005, the entirety of which is incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
1589704 | Kenworthy | Jun 1926 | A |
4261167 | Paull et al. | Apr 1981 | A |
4488398 | Noguchi | Dec 1984 | A |
4785621 | Alderson et al. | Nov 1988 | A |
4785622 | Plumley et al. | Nov 1988 | A |
4896499 | Rice | Jan 1990 | A |
4986499 | Ponticelli | Jan 1991 | A |
5081845 | Allam et al. | Jan 1992 | A |
5459994 | Drnevich | Oct 1995 | A |
5577378 | Althaus et al. | Nov 1996 | A |
6116016 | Wada et al. | Sep 2000 | A |
6487863 | Chen et al. | Dec 2002 | B1 |
6513317 | Arar et al. | Feb 2003 | B2 |
20020077512 | Tendick et al. | Jun 2002 | A1 |
20020148213 | Yu | Oct 2002 | A1 |
20040168468 | Peyron | Sep 2004 | A1 |
20070033918 | Benz et al. | Feb 2007 | A1 |
20070033942 | Benz et al. | Feb 2007 | A1 |
20070039468 | Benz et al. | Feb 2007 | A1 |
Number | Date | Country |
---|---|---|
947843 | Aug 1956 | DE |
2503193 | Jul 1976 | DE |
0622535 | Apr 1994 | EP |
0634562 | Jul 1994 | EP |
0773416 | May 1997 | EP |
0795685 | Sep 1997 | EP |
1098077 | May 2001 | EP |
2335953 | Oct 1999 | GB |
08218891 | Aug 1996 | JP |
11030131 | Feb 1999 | JP |
Number | Date | Country | |
---|---|---|---|
20070033943 A1 | Feb 2007 | US |
Number | Date | Country | |
---|---|---|---|
60706776 | Aug 2005 | US |