The invention relates to a method for operating a magnetic inductive flowmeter in which method an electromagnetic signal is brought via electrodes into the measuring medium and the received signal dependent on the flow is recorded via sensors and the flow is thereby determined, according to the preamble of claim 1.
This makes use of the known measurement principle that is applied for magnetic inductive flowmeters. The physical effect exploited for measuring the velocity of flow is the law of induction. If an electrically conductive measurement material is guided through a magnetic field B, then an electrical field E arises in the measurement material perpendicular to the flow direction V and to the direction of the magnetic field. The relationship is E=B×V.
Magnetic induction flowmeters are used for measuring the flow of all liquids, slurries and pastes with a specific minimum electrical conductivity. It can happen here that as a result of non-homogeneous conductivity distribution in the measurement material, or of friction or other chemical or physical influences, the measured test signal is overlaid by interference signals. These interference signals can be many times greater than the test signal, and impair the quality of the flow measurement to the extent that no useful measuring result can be formed.
The invention is therefore based on the object of improving a method of this type such that the interference signals are minimized.
The specified object is achieved for a method of this type according to the invention by the characterizing features of claim 1.
Further advantageous developments of the method according to the invention are specified in the dependent claims.
The basis of the method according to the invention is that as received signal a received signal spectrum including all interference signals is recorded and a vector product is formed between the received signal spectrum and a reference voltage, and subsequently an inverse Fourier transformation is executed and the resulting signal thus obtained is used for determining the flow. This method according to the invention proves in practice to be enormously effective and above all easily executable.
In a further advantageous development it is specified that the associated reference voltage i.e. the drive voltage is sinusoidal.
In a further advantageous development it is specified that a Fourier spectrum, by means of which the low-frequency disturbances can be represented, is already created from the received signal.
In a further advantageous development it is specified that the method is fed with parameters for the mathematical operations, which are stored in a data characteristic field, adaptively and adjusted to individual measuring tasks.
The method according to the invention is shown and explained with the help of the drawn representations.
Ref. voltage=a1
For filtering, the vector product is formed between the reference voltage and the received signal spectrum a2:
Sa1=Ref. voltage×a2
The spectrum thus obtained reflects the relationship between the reference voltage and the received signal spectrum a2.
Sa1 with the frequency of the reference voltage signal
The last representation, i.e.
In the further signal processing, the relationship to the flow rate is then derived without interference.
| Number | Date | Country | Kind |
|---|---|---|---|
| 10 2004 031 638.4 | Jun 2004 | DE | national |
| Filing Document | Filing Date | Country | Kind | 371c Date |
|---|---|---|---|---|
| PCT/EP05/07048 | 6/30/2005 | WO | 00 | 12/27/2006 |