Method for operating a media feed motor of a printer

Information

  • Patent Grant
  • 6640157
  • Patent Number
    6,640,157
  • Date Filed
    Monday, February 11, 2002
    22 years ago
  • Date Issued
    Tuesday, October 28, 2003
    21 years ago
Abstract
A method of the invention is for operating a media feed motor of a printer to perform a media feed move of a predetermined distance and includes steps a) through c). Step a) includes choosing a position-error scale factor for a media feed move that is within a range of distances. Step b) includes calculating a media-feed-motor drive signal which includes a position error contribution substantially equal to the product of the position-error scale factor and the difference between a desired final media position at the end of a media feed move and the actual media position. Step c) includes modifying the position error contribution in step b) to reduce its effect when the predetermined distance is greater than the maximum distance within the range but not when the predetermined distance is less than the maximum distance within the range.
Description




TECHNICAL FIELD




The present invention relates generally to printers, and more particularly to a method for operating a media feed motor of a printer.




BACKGROUND OF THE INVENTION




Printers include those printers which print on a paper sheet (or other type or form of media). Such printers have a paper feed mechanism to move the paper a predetermined distance such as a distance for the printer to print the next line of print. Such mechanisms include a paper feed motor. Conventional methods for operating a media feed motor of a printer to perform a media feed move of a predetermined distance include those which choose a media-feed-motor drive signal which includes a position error contribution substantially equal to the product of a scale factor and the difference between a desired final media position at the end of a media feed move and the actual media position. Other contributions to the media-feed-motor drive signal involve other control parameters and are known to the artisan. The scale factor and the other control parameters are different for different ranges of move distances. For example, the scale factor and the other control parameters for a media feed move between one and two units is different than the scale factor and the other control parameters for a media feed move between two and three units. In some control methods, the media-feed-motor drive signal includes a desired velocity error contribution of the difference between a desired media velocity and the actual media velocity. The chart of the desired media velocity versus actual media position has an acceleration portion, a steady-state portion, and a deceleration portion.




Sometimes, as is known to those skilled in the art, it is desirable to use the control parameters of a particular range of move distances for a media feed move which is greater than the maximum distance of that particular range. However, when a long media feed move needs to be made at a slower velocity than is typical for the long media feed move, using a velocity limit and the control parameters intended for a shorter move results in large velocity overshoot and poor accuracy in the move results. There is also a chance that the system will become unstable. What is needed is an improved method for operating a media feed motor of a printer.




SUMMARY OF THE INVENTION




A method of the invention is for operating a media feed motor of a printer to perform a media feed move of a predetermined distance and includes steps a) through c). Step a) includes choosing a position-error scale factor for a media feed move that is within a range of distances. Step b) includes calculating a media-feed-motor drive signal which includes a position error contribution substantially equal to the product of the position-error scale factor and the difference between a desired final media position at the end of a media feed move and the actual media position. Step c) includes modifying the position error contribution in step b) to reduce its effect when the predetermined distance is greater than the maximum distance within the range but not when the predetermined distance is less than the maximum distance within the range.




Several benefits and advantages are derived from the method of the invention. Applicants discovered that reducing the effect of the position error contribution of the media-feed-motor drive signal, when a longer media feed move was performed using control parameters for a shorter move, reduces velocity overshoot, improves accuracy in the move, and reduces the chance that the system would become unstable.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a block diagram of one embodiment of a media-feed-motor controller configured for a media feed move within a range of distances using control parameters for that range;





FIG. 2

is a chart of an example of desired media velocity versus actual media position useful to obtain the desired velocity input to

FIG. 1

;





FIG. 3

is a block diagram of the steps of the invention;





FIG. 4

is a graph of the modified position error contribution versus actual media position for a first example of the method of the invention. It can be used in

FIG. 1

for a media feed move greater than the maximum distance of the range for which the control parameters have been chosen;





FIG. 5

is a graph of the modified position error contribution versus actual media position for a second example of the method of the invention. It can be used in

FIG. 1

for a media feed move greater than the maximum distance of the range for which the control parameters have been chosen;





FIG. 6

is a graph of the modified position error contribution versus actual media position for a third example of the method of the invention. It can be used in

FIG. 1

for a media feed move greater than the maximum distance of the range for which the control parameters have been chosen;





FIG. 7

is a graph of the modified position error contribution versus actual media position for a fourth example of the method of the invention. It can be used in

FIG. 1

for a media feed move greater than the maximum distance of the range for which the control parameters have been chosen; and





FIG. 8

is a graph of the modified position error contribution versus actual media position for a fifth example of the method of the invention. It can be used in

FIG. 1

for a media feed move greater than the maximum distance of the range for which the control parameters have been chosen.











DETAILED DESCRIPTION




Referring to

FIG. 1

, one embodiment of a media-feed-motor controller


10


, in which the method of the invention can be employed, includes a media-feed-motor drive signal


12


(labeled as “Output”) which includes a position error contribution equal to the product of a position-error scale factor


14


(labeled as “Kpos”) and the difference between a desired final media position


16


(labeled as “Pos desired”) at the end of a media feed move and the actual media position


18


(labeled as “Pos actual). Such difference is referred to as the position error. The media-feedmotor drive signal


12


also includes a desired velocity contribution in the form of the product of a scale factor


20


(labeled as Kp) and the difference between the desired media velocity


22


(labeled as “Vel desired”) and the actual media velocity


24


(labeled as “Vel actual”). The media-feed-motor drive signal


12


additionally includes a desired velocity contribution in the form of the product of a scale factor


26


(labeled as Ki) and the time integral


28


(labeled as “∫”) of the difference between the desired media velocity


22


and the actual media velocity


24


. Other embodiments of the media-feed-motor controller are left to the artisan.




A chart of one embodiment of desired velocity versus actual media position is shown in FIG.


2


. The desired velocity


30


has an acceleration portion


32


, a steady-state portion


34


, and a deceleration portion


36


. The start of the media feed move is shown at point


38


and the end of the media feed move is shown at point


40


. The x axis is the actual media position and the y axis is the desired velocity.




A method of the invention, shown in block diagram form in

FIG. 3

, is for operating a media feed motor of a printer to perform a media feed move of a predetermined distance and includes steps a) through c). Step a) is labeled as “Choose Scale Factor” in block


42


of FIG.


3


. Step a) includes choosing a position-error scale factor for a media feed move that is within a range of distances. Step b) is labeled as “Calculate Media-Feed-Motor Drive Signal” in block


44


of FIG.


3


. Step b) includes calculating a media-feed-motor drive signal which includes a position error contribution substantially equal to the product of the position-error scale factor and the difference between a desired final media position at the end of a media feed move and the actual media position. Such difference is also known as the position error. Step c) is labeled as “Modify Position Error Contribution” in block


46


of FIG.


3


. Step c) includes modifying the position error contribution in step b) to reduce its effect when the predetermined distance is greater than the maximum distance within the range but not when the predetermined distance is less than the maximum distance within the range. It is noted that printers are used, without limitation, for computer printing, for copying, for receiving and printing electronic transmissions, etc. The invention is not limited to a particular type of printer. It is also noted that the printer can print on any type of media including, without limitation, paper, transparencies, etc. and use any form of media including, without limitation, a sheet, a roll, etc. The invention is not limited to a particular type or form of media.




In a first example of the method of the invention, step c) modifies the position error contribution by setting a limit on the position error contribution at the start of a media feed move and by thereafter causing the position error contribution versus actual media position to decay throughout the media feed move. In one implementation of the first example, the limit is equal to the maximum position error contribution for the maximum distance within the range. In the same or a different implementation, step c) causes the position error contribution versus actual media position to linearly decay. Such implementations are graphically depicted in

FIG. 4

which shows a modified position error contribution


48


for a long move (i.e., a move that is longer than the range used for the control parameters) and an unmodified position error contribution


50


for a normal move (i.e., a move that is within the range used for the control parameters). “L” indicates the limit, “S” indicates the start position of the media feed move, “A” indicates the end position of a normal media feed move, and “B” indicates the end position of a long media feed move. The x axis is the actual media position (labeled as “Position along Move”) and the y axis is the position error contribution (labeled as Kpos * Position Error”).




In a second example of the method, the media-feed-motor-drive signal includes a desired media feed velocity contribution, wherein a chart (such as that shown in

FIG. 2

) of the desired media feed velocity


30


versus actual media position includes an acceleration portion


32


, a substantially steady-state portion


34


, and a deceleration portion


36


. In this example, step c) modifies the position error contribution by setting a limit on the position error contribution at the start of a media feed move, by thereafter causing the position error contribution versus actual media position to decay for actual media positions corresponding to the acceleration and deceleration portions of the chart, and by using a substantially constant value for the position error contribution versus actual media position for actual media positions corresponding to the steady-state portion of the chart. In one implementation of the second example, the limit is equal to the maximum position error contribution for the maximum distance within the range. In the same or a different implementation, step c) causes the position error contribution versus actual media position to linearly decay for actual media positions corresponding to the acceleration and deceleration portions of the chart. In the same or a different implementation, the acceleration portion of the chart is substantially linear and the deceleration portion of the chart is substantially linear. Such implementations are graphically depicted in

FIGS. 2 and 5

.

FIG. 2

has been previously discussed.

FIG. 5

shows a modified position error contribution


52


for a long move (i.e., a move that is longer than the range used for the control parameters) and an unmodified position error contribution


54


for a normal move (i.e., a move that is within the range used for the control parameters). “L” indicates the limit, “S” indicates the start position of the media feed move, “A” indicates the end position of a normal media feed move, and “B” indicates the end position of a long media feed move. The x axis is the actual media position (labeled as “Position along Move”) and the y axis is the position error contribution (labeled as Kpos * Position Error”). Point


56


in

FIG. 5

indicates the actual media position corresponding to the start of the steady state portion


34


of the chart of

FIG. 2

, and point


58


in

FIG. 5

indicates the actual media position corresponding to the end of the steady state portion


34


of the chart of

FIG. 2

for the long media feed move. It is noted that point


40


in

FIG. 2

is the actual media position which corresponds to point “A” of

FIG. 5

for a normal media feed move and which corresponds to point “B” for a long media feed move. It is also noted that the value of the steady state portion


34


of

FIG. 2

is substantially the same for a normal or a long media feed move, the acceleration rate of

FIG. 2

is substantially the same for a normal or a long media feed move, and the deceleration rate of

FIG. 2

is substantially the same for a normal or a long media feed move.




In a third example of the method, step c) modifies the position error contribution by setting a limit on the position error contribution at the start of a media feed move and by replacing the value of the desired final media position in the product of step b) with a replacement value less than the desired final media position. In one implementation of the third example, the limit is equal to the maximum position error contribution for the maximum distance within the range. In the same or a different implementation, the replacement value is equal to substantially the maximum distance within the range. Such implementations are graphically shown in

FIG. 6

which shows a modified position error contribution


60


for a long move (i.e., a move that is longer than the range used for the control parameters) which is the same as an unmodified position error contribution


62


for a normal move (i.e., a move that is within the range used for the control parameters). “L” indicates the limit, “S” indicates the start position of the media feed move, “A” indicates the end position of a normal media feed move, and “B” indicates the end position of a long media feed move. In one application of this example, the desired velocity profile of

FIG. 2

is changed to be just acceleration, and “A” in FIG.


6


and point


40


in

FIG. 2

are chosen to correspond to the end of the acceleration period. The x axis is the actual media position (labeled as “Position along Move”) and the y axis is the position error contribution (labeled as Kpos * Position Error”).




In a fourth example of the method, step c) modifies the position error contribution by setting a limit on the position error contribution at the start of the media feed move, by thereafter maintaining the limit until the actual media position reaches a predetermined media position, and by causing the position error contribution versus actual media position to decay when the actual media position exceeds the predetermined media position. In the fourth example, the predetermined media position is equal substantially to the media position corresponding to when the unlimited position error contribution first becomes less than the limit. In one implementation of the fourth example, the limit is equal to the maximum position error contribution for the maximum distance within the range. In the same or a different implementation, step c) causes the position error contribution versus actual media position to linearly decay when the actual media position exceeds the predetermined media position. Such implementations are graphically shown in

FIG. 7

which shows a modified position error contribution


64


for a long move (i.e., a move that is longer than the range used for the control parameters) and an unmodified position error contribution


66


for a normal move (i.e., a move that is within the range used for the control parameters). “L” indicates the limit, “S” indicates the start position of the media feed move, “A” indicates the end position of a normal media feed move, and “B” indicates the end position of a long media feed move. The x axis is the actual media position (labeled as “Position along Move”) and the y axis is the position error contribution (labeled as Kpos * Position Error”). Point


68


in

FIG. 7

indicates the actual media position when the unlimited position error contribution first becomes less than the limit.




In a fifth example of the method, step c) modifies the position error contribution by setting a limit on the position error contribution at the start of the media feed move, by thereafter maintaining the limit until the actual media position reaches a predetermined media position, and by causing the position error contribution versus actual media position to decay when the actual media position exceeds the predetermined media position. In the fifth example, the media-feed-motor-drive signal includes a desired media feed velocity contribution, wherein a chart (such as that shown in

FIG. 2

) of the desired media feed velocity


30


versus actual media position includes an acceleration portion


32


, a substantially steady-state portion


34


, and a deceleration portion


36


, wherein the predetermined media position is the media position which corresponds to the start of the deceleration portion of the chart. In one implementation of the fifth example, the limit is equal to the maximum position error contribution for the maximum distance within the range. In the same or a different implementation, step c) causes the position error contribution versus actual media position to linearly decay when the actual media position exceeds the predetermined media position. Such implementations are graphically depicted in

FIGS. 2 and 8

.

FIG. 2

has been previously discussed.

FIG. 8

shows a modified position error contribution


70


for a long move (i.e., a move that is longer than the range used for the control parameters) and an unmodified position error contribution


72


for a normal move (i.e., a move that is within the range used for the control parameters). “L” indicates the limit, “S” indicates the start position of the media feed move, “A” indicates the end position of a normal media feed move, and “B” indicates the end position of a long media feed move. The x axis is the actual media position (labeled as “Position along Move”) and the y axis is the position error contribution (labeled as Kpos * Position Error”). Point


74


in

FIG. 8

indicates the actual media position corresponding to the start of the deceleration portion


36


of the chart of FIG.


2


. It is noted that point


40


in

FIG. 2

is the actual media position which corresponds to point “A” of

FIG. 5

for a normal media feed move and which corresponds to point “B” for a long media feed move. It is also noted that the value of the steady state portion


34


of

FIG. 2

is substantially the same for a normal or a long media feed move, the acceleration rate of

FIG. 2

is substantially the same for a normal or a long media feed move, and the deceleration rate of

FIG. 2

is substantially the same for a normal or a long media feed move.




It is seen that examples 4 and 5 are narrow examples of a broader example of the method of the invention. In the broader example, step c) modifies the position error contribution by setting a limit on the position error contribution at the start of the media feed move, by thereafter maintaining the limit until the actual media position reaches a predetermined media position, and by causing the position error contribution versus actual media position to decay when the actual media position exceeds the predetermined media position. Predetermined media positions other than those described in examples 4 and 5 are left to the artisan. It is noted that the implementations of the fourth and fifth examples are equally applicable to the broader example. It is also noted that, in one application of the method of the invention, including in one application of all of the previously-described examples thereof, the position error is substantially zero at the end of a completed media feed move (unless such move is interrupted).




Several benefits and advantages are derived from the method of the invention. Applicants discovered that reducing the effect of the position error contribution of the media-feed-motor drive signal, when a longer media feed move was performed using control parameters for a shorter move, reduces velocity overshoot, improves accuracy in the move, and reduces the chance that the system would become unstable.




The foregoing description of a method and several examples thereof has been presented for purposes of illustration. It is not intended to be exhaustive or to limit the invention to the precise procedures and examples disclosed, and obviously many modifications and variations are possible in light of the above teaching. It is intended that the scope of the invention be defined by the claims appended hereto.



Claims
  • 1. A method for operating a media feed motor of a printer to perform a media feed move of a predetermined distance comprising the steps of:a) choosing a position-error scale factor for a media feed move that is within a range of distances; b) calculating a media-feed-motor drive signal which includes a position error contribution substantially equal to the product of the position-error scale factor and the difference between a desired final media position at the end of a media feed move and the actual media position; and c) modifying the position error contribution in step b) to reduce its effect when the predetermined distance is greater than the maximum distance within the range but not when the predetermined distance is less than the maximum distance within the range.
  • 2. The method of claim 1, wherein step c) modifies the position error contribution by setting a limit on the position error contribution at the start of a media feed move and by thereafter causing the position error contribution versus actual media position to decay throughout the media feed move.
  • 3. The method of claim 2, wherein the limit is equal to the maximum position error contribution for the maximum distance within the range.
  • 4. The method of claim 2, wherein step c) causes the position error contribution versus actual media position to linearly decay.
  • 5. The method of claim 1, wherein the media-feed-motor-drive signal includes a desired media feed velocity contribution, wherein a chart of the desired media feed velocity versus actual media position includes an acceleration portion, a substantially steady-state portion, and a deceleration portion, and wherein step c) modifies the position error contribution by setting a limit on the position error contribution at the start of a media feed move, by thereafter causing the position error contribution versus actual media position to decay for actual media positions corresponding to the acceleration and deceleration portions of the chart, and by using a substantially constant value for the position error contribution versus actual media position for actual media positions corresponding to the steady-state portion of the chart.
  • 6. The method of claim 5, wherein the limit is equal to the maximum position error contribution for the maximum distance within the range.
  • 7. The method of claim 5, wherein step c) causes the position error contribution versus actual media position to linearly decay for actual media positions corresponding to the acceleration and deceleration portions of the chart.
  • 8. The method of claim 7, wherein the acceleration portion of the chart is substantially linear and wherein the deceleration portion of the chart is substantially linear.
  • 9. The method of claim 1, wherein step c) modifies the position error contribution by setting a limit on the position error contribution at the start of a media feed move and by replacing the value of the desired final media position in the product of step b) with a replacement value less than the desired final media position.
  • 10. The method of claim 9, wherein the limit is equal to the maximum position error contribution for the maximum distance within the range.
  • 11. The method of claim 10, wherein the replacement value is equal to substantially the maximum distance within the range.
  • 12. The method of claim 1, wherein step c) modifies the position error contribution by setting a limit on the position error contribution at the start of the media feed move, by thereafter maintaining the limit until the actual media position reaches a predetermined media position, and by causing the position error contribution versus actual media position to decay when the actual media position exceeds the predetermined media position.
  • 13. The method of claim 12, wherein the limit is equal to the maximum position error contribution for the maximum distance within the range.
  • 14. The method of claim 12, wherein step c) causes the position error contribution versus actual media position to linearly decay when the actual media position exceeds the predetermined media position.
  • 15. The method of claim 12, wherein the predetermined media position is equal substantially to the media position corresponding to when the unlimited position error contribution first becomes less than the limit.
  • 16. The method of claim 15, wherein the limit is equal to the maximum position error contribution for the maximum distance within the range.
  • 17. The method of claim 15, wherein step c) causes the position error contribution versus actual media position to linearly decay when the actual media position exceeds the predetermined media position.
  • 18. The method of claim 12, wherein the media-feed-motor-drive signal includes a desired media feed velocity contribution, wherein a chart of the desired media feed velocity versus actual media position includes an acceleration portion, a substantially steady-state portion, and a deceleration portion, and wherein the predetermined media position is the media position which corresponds to the start of the deceleration portion of the chart.
  • 19. The method of claim 18, wherein the limit is equal to the maximum position error contribution for the maximum distance within the range.
  • 20. The method of claim 18, wherein step c) causes the position error contribution versus actual media position to linearly decay when the actual media position exceeds the predetermined media position.
  • 21. A method for operating a media feed motor of a printer to perform a media feed move of a predetermined distance comprising the steps of:a) choosing a position-error scale factor for a media feed move that is within a range of distances; b) calculating a media-feed-motor drive signal which includes a position error contribution substantially equal to the product of the position-error scale factor and the difference between a desired final media position at the end of a media feed move and the actual media position; and c) modifying the position error contribution in step b) to reduce its effect when the predetermined distance is greater than the maximum distance within the range but not when the predetermined distance is less than the maximum distance within the range, wherein step c) modifies the position error contribution by setting a limit on the position error contribution at the start of a media feed move and by thereafter causing the position error contribution versus actual media position to decay throughout the media feed move.
  • 22. A method for operating a media feed motor of a printer to perform a media feed move of a predetermined distance comprising the steps of:a) choosing a position-error scale factor for a media feed move that is within a range of distances; b) calculating a media-feed-motor drive signal which includes a position error contribution substantially equal to the product of the position-error scale factor and the difference between a desired final media position at the end of a media feed move and the actual media position; and c) modifying the position error contribution in step b) to reduce its effect when the predetermined distance is greater than the maximum distance within the range but not when the predetermined distance is less than the maximum distance within the range, wherein the media-feed-motor-drive signal includes a desired media feed velocity contribution, wherein a chart of the desired media feed velocity versus actual media position includes an acceleration portion, a substantially steady-state portion, and a deceleration portion, and wherein step c) modifies the position error contribution by setting a limit on the position error contribution at the start of a media feed move, by thereafter causing the position error contribution versus actual media position to decay for actual media positions corresponding to the acceleration and deceleration portions of the chart, and by using a substantially constant value for the position error contribution versus actual media position for actual media positions corresponding to the steady-state portion of the chart.
  • 23. A method for operating a media feed motor of a printer to perform a media feed move of a predetermined distance comprising the steps of:a) choosing a position-error scale factor for a media feed move that is within a range of distances; b) calculating a media-feed-motor drive signal which includes a position error contribution substantially equal to the product of the position-error scale factor and the difference between a desired final media position at the end of a media feed move and the actual media position; and c) modifying the position error contribution in step b) to reduce its effect when the predetermined distance is greater than the maximum distance within the range but not when the predetermined distance is less than the maximum distance within the range, wherein step c) modifies the position error contribution by setting a limit on the position error contribution at the start of a media feed move and by replacing the value of the desired final media position in the product of step b) with a replacement value less than the desired final media position.
  • 24. A method for operating a media feed motor of a printer to perform a media feed move of a predetermined distance comprising the steps of:a) choosing a position-error scale factor for a media feed move that is within a range of distances; b) calculating a media-feed-motor drive signal which includes a position error contribution substantially equal to the product of the position-error scale factor and the difference between a desired final media position at the end of a media feed move and the actual media position; and c) modifying the position error contribution in step b) to reduce its effect when the predetermined distance is greater than the maximum distance within the range but not when the predetermined distance is less than the maximum distance within the range, wherein step c) modifies the position error contribution by setting a limit on the position error contribution at the start of the media feed move, by thereafter maintaining the limit until the actual media position reaches a predetermined media position, and by causing the position error contribution versus actual media position to decay when the actual media position exceeds the predetermined media position.
  • 25. A method for operating a media feed motor of a printer to perform a media feed move of a predetermined distance comprising the steps of:a) choosing a position-error scale factor for a media feed move that is within a range of distances; b) calculating a media-feed-motor drive signal which includes a position error contribution substantially equal to the product of the position-error scale factor and the difference between a desired final media position at the end of a media feed move and the actual media position; and c) modifying the position error contribution in step b) to reduce its effect when the predetermined distance is greater than the maximum distance within the range but not when the predetermined distance is less than the maximum distance within the range, wherein step c) modifies the position error contribution by setting a limit on the position error contribution at the start of the media feed move, by thereafter maintaining the limit until the actual media position reaches a predetermined media position, and by causing the position error contribution versus actual media position to decay when the actual media position exceeds the predetermined media position, and wherein the predetermined media position is equal substantially to the media position corresponding to when the unlimited position error contribution first becomes less than the limit.
  • 26. A method for operating a media feed motor of a printer to perform a media feed move of a predetermined distance comprising the steps of:a) choosing a position-error scale factor for a media feed move that is within a range of distances; b) calculating a media-feed-motor drive signal which includes a position error contribution substantially equal to the product of the position-error scale factor and the difference between a desired final media position at the end of a media feed move and the actual media position; and c) modifying the position error contribution in step b) to reduce its effect when the predetermined distance is greater than the maximum distance within the range but not when the predetermined distance is less than the maximum distance within the range, wherein step c) modifies the position error contribution by setting a limit on the position error contribution at the start of the media feed move, by thereafter maintaining the limit until the actual media position reaches a predetermined media position, and by causing the position error contribution versus actual media position to decay when the actual media position exceeds the predetermined media position, wherein the media-feed-motor-drive signal includes a desired media feed velocity contribution, wherein a chart of the desired media feed velocity versus actual media position includes an acceleration portion, a substantially steady-state portion, and a deceleration portion, and wherein the predetermined media position is the media position which corresponds to the start of the deceleration portion of the chart.
US Referenced Citations (20)
Number Name Date Kind
3940127 Petusky et al. Feb 1976 A
4275968 Irwin Jun 1981 A
4493570 Araki Jan 1985 A
4511242 Ashbee et al. Apr 1985 A
4533269 Pou et al. Aug 1985 A
4538933 Imaizumi et al. Sep 1985 A
4590859 Pou et al. May 1986 A
4643089 Salazar et al. Feb 1987 A
4734868 DeLacy Mar 1988 A
4925325 Niikawa May 1990 A
4968165 Karube et al. Nov 1990 A
5071273 Kato Dec 1991 A
5193920 Matsumoto et al. Mar 1993 A
5209589 Bliss May 1993 A
5251891 Blaser et al. Oct 1993 A
5454653 Miwa Oct 1995 A
5490734 Maruyama et al. Feb 1996 A
5702191 Kakizaki et al. Dec 1997 A
5816716 Sugiyama Oct 1998 A
6168333 Merz et al. Jan 2001 B1