1. Field of the Invention
The invention relates to operating a steam generator in a fabric treatment appliance.
2. Description of the Related Art
Some fabric treatment appliances, such as a washing machine, a clothes dryer, and a fabric refreshing or revitalizing machine, use steam generators for various reasons. The steam from the steam generator can be used to, for example, heat water, heat a load of fabric items and any water absorbed by the fabric items, dewrinkle fabric items, remove odors from fabric items, sanitize the fabric items, and sanitize components of the fabric treatment appliance.
A common problem associated with steam generators involves the formation of deposits, such as scale and sludge, within the steam generation chamber. Water supplies for many households may contain dissolved substances, such as calcium and magnesium, which can lead to the formation of deposits in the steam generation chamber when the water is heated. Scale and sludge are, respectively, hard and soft deposits; in some conditions, the hard scale tends to deposit on the inner walls of the structure forming the steam generation chamber, and the soft sludge can settle to the bottom of the steam generator. Formation of scale and sludge can detrimentally affect heat transfer and thereby decrease the steam generating efficiency of the steam generator (i.e., energy or heat input compared to resulting steam output). Further, scale and sludge can hinder fluid and steam flow through and out of the steam generator and can lead to a reduced operational life of the heater or steam generator.
A method of controlling the operation of a steam generator in a fabric treatment appliance comprising changing a flow rate of water supplied to the steam generator to determine a change in calcification of the steam generator.
In the drawings:
Referring now to the figures,
The tub 14 and/or the drum 16 may be considered a receptacle, and the receptacle may define a treatment chamber for receiving fabric items to be treated. While the illustrated washing machine 10 includes both the tub 14 and the drum 16, it is within the scope of the invention for the fabric treatment appliance to include only one receptacle, with the receptacle defining the treatment chamber for receiving the fabric items to be treated.
Washing machines are typically categorized as either a vertical axis washing machine or a horizontal axis washing machine. As used herein, the “vertical axis” washing machine refers to a washing machine having a rotatable drum that rotates about a generally vertical axis relative to a surface that supports the washing machine. Typically, the drum is perforate or imperforate and holds fabric items and a fabric moving element, such as an agitator, impeller, nutator, and the like, that induces movement of the fabric items to impart mechanical energy to the fabric articles for cleaning action. However, the rotational axis need not be vertical. The drum can rotate about an axis inclined relative to the vertical axis. As used herein, the “horizontal axis” washing machine refers to a washing machine having a rotatable drum that rotates about a generally horizontal axis relative to a surface that supports the washing machine. The drum may be perforated or imperforate, holds fabric items, and typically washes the fabric items by the fabric items rubbing against one another and/or hitting the surface of the drum as the drum rotates. In horizontal axis washing machines, the clothes are lifted by the rotating drum and then fall in response to gravity to form a tumbling action that imparts the mechanical energy to the fabric articles. In some horizontal axis washing machines, the drum rotates about a horizontal axis generally parallel to a surface that supports the washing machine. However, the rotational axis need not be horizontal. The drum can rotate about an axis inclined relative to the horizontal axis, with fifteen degrees of inclination being one example of inclination.
Vertical axis and horizontal axis machines are best differentiated by the manner in which they impart mechanical energy to the fabric articles. In vertical axis machines, the fabric moving element moves within a drum to impart mechanical energy directly to the clothes or indirectly through wash liquid in the drum. The clothes mover is typically moved in a reciprocating rotational movement. In horizontal axis machines mechanical energy is imparted to the clothes by the tumbling action formed by the repeated lifting and dropping of the clothes, which is typically implemented by the rotating drum. The illustrated exemplary washing machine of
With continued reference to
The washing machine 10 of
The exemplary washing machine 10 may further include a steam generation system. The steam generation system may include a steam generator 60 that may receive liquid from the water supply 29 through a second supply conduit 62, optionally via a reservoir 64. The inlet valve 34 may control flow of the liquid from the water supply 29 and through the second supply conduit 62 and the reservoir 64 to the steam generator 60. The inlet valve 34 may be positioned in any suitable location between the water supply 29 and the steam generator 60. A steam conduit 66 may fluidly couple the steam generator 60 to a steam inlet 68, which may introduce steam into the tub 14. The steam inlet 68 may couple with the tub 14 at any suitable location on the tub 14 and is shown as being coupled to a rear wall of the tub 14 in
An optional sump heater 52 may be located in the sump 38. The sump heater 52 may be any type of heater and is illustrated as a resistive heating element for exemplary purposes. The sump heater 52 may be used alone or in combination with the steam generator 60 to add heat to the chamber 15. Typically, the sump heater 52 adds heat to the chamber 15 by heating water in the sump 38. The tub 14 may further include a temperature sensor 54, which may be located in the sump 38 or in another suitable location in the tub 14. The temperature sensor 54 may sense the temperature of water in the sump 38, if the sump 38 contains water, or a general temperature of the tub 14 or interior of the tub 14. The tub 14 may alternatively or additionally have a temperature sensor 56 located outside the sump 38 to sense a general temperature of the tub or interior of the tub 14. The temperature sensors 54, 56 may be any type of temperature sensors, which are well-known to one skilled in the art. Exemplary temperature sensors for use as the temperature sensors 54, 56 include thermistors, such as a negative temperature coefficient (NTC) thermistor.
The washing machine 10 may further include an exhaust conduit (not shown) that may direct steam that leaves the tub 14 externally of the washing machine 10. The exhaust conduit may be configured to exhaust the steam directly to the exterior of the washing machine 10. Alternatively, the exhaust conduit may be configured to direct the steam through a condenser prior to leaving the washing machine 10. Examples of exhaust systems are disclosed in the following patent applications, which are incorporated herein by reference in their entirety: U.S. patent application Ser. No. 11/464,506, titled “Fabric Treating Appliance Utilizing Steam,” U.S. patent application Ser. No. 11/464,501, titled “A Steam Fabric Treatment Appliance with Exhaust,” U.S. patent application Ser. No. 11/464,521, titled “Steam Fabric Treatment Appliance with Anti-Siphoning,” and U.S. patent application Ser. No. 11/464,520, titled “Determining Fabric Temperature in a Fabric Treating Appliance,” all filed Aug. 15, 2006.
The steam generator 60 may be any type of device that converts the liquid to steam. For example, the steam generator 60 may be a tank-type steam generator that stores a volume of liquid and heats the volume of liquid to convert the liquid to steam. Alternatively, the steam generator 60 may be an in-line steam generator that converts the liquid to steam as the liquid flows through the steam generator 60. As another alternative, the steam generator 60 may utilize the sump heater 52 or other heating device located in the sump 38 to heat liquid in the sump 38. The steam generator 60 may produce pressurized or non-pressurized steam.
Exemplary steam generators are disclosed in U.S. patent application Ser. No. 11/464,528, titled “Removal of Scale and Sludge in a Steam Generator of a Fabric Treatment Appliance,” U.S. patent application Ser. No. 11/450,836, titled “Prevention of Scale and Sludge in a Steam Generator of a Fabric Treatment Appliance,” and U.S. patent application Ser. No. 11/450,714, titled “Draining Liquid From a Steam Generator of a Fabric Treatment Appliance,” all filed Jun. 9, 2006, in addition to U.S. patent application Ser. No. 11/464,509, titled “Water Supply Control for a Steam Generator of a Fabric Treatment Appliance,” U.S. patent application Ser. No. 11/464,514, titled “Water Supply Control for a Steam Generator of a Fabric Treatment Appliance Using a Weight Sensor,” and U.S. patent application Ser. No. 11/464,513, titled “Water Supply Control for a Steam Generator of a Fabric Treatment Appliance Using a Temperature Sensor,” all filed Aug. 15, 2006, which are incorporated herein by reference in their entirety.
In addition to producing steam, the steam generator 60, whether an in-line steam generator, a tank-type steam generator, or any other type of steam generator, may heat water to a temperature below a steam transformation temperature, whereby the steam generator 60 produces heated water. The heated water may be delivered to the tub 14 and/or drum 16 from the steam generator 60. The heated water may be used alone or may optionally mix with cold or warm water in the tub 14 and/or drum 16. Using the steam generator 60 to produce heated water may be useful when the steam generator 60 couples only with a cold water source of the water supply 29. Optionally, the steam generator 60 may be employed to simultaneously supply steam and heated water to the tub 14 and/or drum 16.
The liquid supply and recirculation system and the steam generation system may differ from the configuration shown in
Other alternatives for the liquid supply and recirculation system are disclosed in U.S. patent application Ser. No. 11/450,636, titled “Method of Operating a Washing Machine Using Steam;” U.S. patent application Ser. No. 11/450,529, titled “Steam Washing Machine Operation Method Having Dual Speed Spin Pre-Wash;” and U.S. patent application Ser. No. 11/450,620, titled “Steam Washing Machine Operation Method Having Dry Spin Pre-Wash,” all filed Jun. 9, 2006, which are incorporated herein by reference in their entirety.
Referring now to
Many known types of controllers may be used for the controller 70. The specific type of controller is not germane to the invention. It is contemplated that the controller is a microprocessor-based controller that implements control software and sends/receives one or more electrical signals to/from each of the various components (inlet valve 34, detergent dispenser 32, steam generator 60, pump 44, motor 22, control panel 80, and temperature sensors 54, 56) to effect the control software. As an example, proportional control (P), proportional integral control (PI), and proportional derivative control (PD), or a combination thereof, a proportional integral derivative control (PID control), may be used to control the various components.
With continued reference to
The steam generator 60 may be employed for steam generation during operation of the washing machine 10, such as during a wash operation cycle, which can include prewash, wash, rinse, and spin steps, during a washing machine cleaning operation cycle to remove or reduce biofilm and other undesirable substances, like microbial bacteria and fungi, from the washing machine, during a refresh or dewrinkle operation cycle, or during any other type of operation cycle. The steam generator may also be employed for generating heated water during operation of the washing machine 10. The steam generator 60 may also be employed to clean itself, and an example of a method for cleaning the steam generator 60 is disclosed in the U.S. patent application titled “Method for Cleaning a Steam Generator,” having reference number 71354-0576/US20070340, which is incorporated herein by reference in its entirety.
As described in the background of the invention, calcification of the steam generator 60 can detrimentally affect heat transfer and the efficiency of steam generation by the steam generator 60. However, the operation of the steam generator 60 may be controlled in a manner to optimize or at least improve the efficiency of steam generation by the steam generator 60 in response to calcification of the steam generator 60. A method according to one embodiment of the invention for operating the steam generator 60 incorporates setting an operational temperature range for the steam generator 60 and changing a flow rate of water to the steam generator 60 based on calcification of the steam generator 60 to improve the efficiency of the steam generator 60. The combination of the operational temperature range and the flow rate of the water determine calcification of the steam generator 60, particularly by determining a change in the calcification of the steam generator 60. The manner of determining the change in the calcification of the steam generator 60 will be more readily understood in light of the following description and examples.
The operational temperature range for the steam generator 60 may include an operational temperature maximum and an operational temperature minimum, and an actual temperature of the steam generator 60, which may be determined by the temperature sensors 122 or other temperature detection devices, more or less lies between the operational temperature maximum and minimum. The operational temperature range may be selected to correspond to a desired steam output and steam generation efficiency and may shift during operation of the steam generator 60 in response to a change in the calcification of the steam generator 60. During operation of the steam generator 60, the controller 70 may control the steam generator 60 and the water supply to the steam generator 60 to maintain the actual temperature within the operational temperature range. In reality, maintaining the actual temperature within the operational temperature range may be difficult due to operational factors (i.e., the actual temperature may transiently exceed or fall below the operational temperature maximum and operational temperature minimum, respectively), but, for the most part, the controller 70 maintains the actual temperature within the operational temperature range. When conditions prevent the controller 70 from maintaining the actual temperature within the operational temperature range (i.e., the actual temperature crossing the operational temperature-exceeding the operation temperature maximum or falling below the operational temperature minimum without the controller 70 being able to return the actual temperature to within the actual temperature range), as will be described below, the operational temperature range may shift up or down, depending on the conditions preventing the maintaining of the actual temperature in the operational temperature range.
Referring now to
In a control area 2, which is an area between the operational temperature minimum and the operational temperature maximum, the actual temperature would be acceptable, and the controller 70 would decrease the flow rate of water to the steam generator 60 in small steps. Decreasing the flow rate of water in small steps gradually decreases the flow rate of water in an effort to utilize the least amount of water needed for steam generation. Using an amount of water greater than an amount necessary for a desired steam output may result in outputting small amounts of water with steam or outputting greater amounts of water without appreciable steam output. Under most operating conditions, outputting additional water from the steam generator 60 is not desired as it is not resource efficient from both a water usage perspective and an electricity consumption perspective—a greater volume of water in the steam generator 60 means more heat is required to boil the water to produce steam. Gradually reducing the flow rate of water may avoid or reduce water output, minimize water usage, and improve the steam generating efficiency. Naturally, the reduction in the flow rate of water may also lead to a rise in the actual temperature to a control area 3 as there is less water to absorb the heat.
For the control area 3, which is an area above the operational temperature maximum and below an over temperature, indicated by a line 134, the actual temperature would be too high, and the controller 70 would increase the flow rate of water to the steam generator 60 to attempt to decrease the actual temperature. If the actual temperature would continue to increase to a control area 4, which is an area above the over temperature, the controller 70 would shut off the steam generator 60 to protect the steam generator 60 from potential overheating. The control area 4 represents overheating of the steam generator 60 and is static during the operation of the steam generator 60. That is, the control areas 1-3 are dependent on the operational temperature range, which may shift during the operation of the steam generator 60. The control area 4 depends only on a predetermined temperature indicative of overheating, and the predetermined temperature remains constant during the operation of the steam generator 60. It is possible to employ a dynamic predetermined temperature indicative of overheating, but the current embodiment utilizes a static predetermined temperature indicative of overheating.
Depending on the control area, the flow rate of water to the steam generator 60 may decrease (i.e., control area 1 and control area 2) or increase (i.e., control area 3). The changing of the flow rate of water to the steam generator 60 may be accomplished in any suitable manner. In the illustrated embodiment, the flow rate of water may be changed by altering the operation of the inlet valve 34 (
In the context of a fixed volume steam generator, the maximum opened time and the minimum closed time can be selected to prevent overfilling the steam generator 60 as overfilling would lead to extra water flowing out the steam conduit 66, or run dry, which would lead to a stoppage in the generation of steam.
A change in the calcification of the steam generator 60, such as by increasing or decreasing the amount of deposits in the steam generator 60, affects heat transfer in the steam generator 60. An increase in the calcification tends to hinder heat transfer from the heat source 118 to water in the steam generator 60. The deposits add mass through which the heat must flow to reach the water. Further, the deposits are poor conductors of heat and provide an insulating effect to the steam generator 60. Thus, the increasing calcification causes an increase in the actual temperature of the steam generator 60 as the heat produced by the heat source 118 heats the steam generator 60 itself and the deposits. As calcification increases, the actual temperature of the steam generator must be increased to higher temperature for the water on the interior to reach a temperature sufficient for conversion of the water to steam. Conversely, a decrease in the calcification, which may occur naturally during operation of the steam generator 60 due to cracking of the deposits, i.e., the separating of at least a portion of the deposits from each other or from the steam generator tube 110, or may occur as a result of a steam generator cleaning process, such as the process described in the aforementioned and incorporated patent application titled “Method for Cleaning a Steam Generator,” leads to a decrease in the actual temperature of the steam generator 60 as the excess heat that previously heated the steam generator 60 itself and the deposits may be transferred to the water in the steam generator 60 for steam conversion. Thus, as calcification increases, the actual temperature in control area 2 may approach or exceed the operational temperature maximum, and, as calcification decreases, the actual temperature may reduce to or below the operational temperature minimum. This phenomenon provides the basis for correlating the actual temperature of the steam generator and the degree of calcification. The operational temperature range may be set and adjusted during the operation of the steam generator 10 based on the calcification by monitoring the actual temperature of the steam generator 60.
When the actual temperature in control area 2 approaches or reaches the operational temperature maximum, the flow rate of water to the steam generator 60, which, as described above, has been gradually decreasing, may be changed to attempt to maintain the actual temperature in the operational temperature range. For example, when the actual temperature approaches or reaches the operational temperature maximum, the flow rate of water to the steam generator 60 may be increased to attempt to maintain the actual temperature below the operational temperature maximum. The flow rate of water may be increased directly or gradually to any suitable increased flow rate of water, such as the maximum flow rate of water. If the actual temperature exceeds the operational temperature maximum and cannot be returned to below the operational temperature maximum despite the increased flow rate of water, detection of increased calcification occurs, and the operational temperature maximum may be shifted upward or increased to account for the increased calcification. Optionally, the operational temperature minimum may also be shifted upward or increased such that the operational temperature range shifts upward as a unit. Exemplary upward operational temperature range shifts may be observed at points B, C, F, G, and H in
Conversely, when the actual temperature in control area 2 reaches the operational temperature minimum, and the flow rate of water to the steam generator 60, which, as described above, has been gradually decreasing, has reached the minimum flow rate of water, detection of decreased calcification occurs, and the operational temperature minimum may be shifted downward or decreased to account for the decreased calcification. Optionally, the operational temperature maximum may also be shifted downward or decreased such that the operational temperature range shifts downward as a unit. Exemplary upward operational temperature range shifts may be observed at points D and E in
The remainder of the description will assume coincident shifting of the operational temperature maximum and minimum, with it being understood that one may shift independently of the other and that the amount of shifting (i.e., number of degrees shifted) may be different for the operational temperature maximum and operational temperature minimum.
The shift in the operational temperature range may be any suitable shift. For example, the operational temperature range may shift by one degree Celsius. Further, the upward shifts and the downward shifts may be by the same number of degrees Celsius or a different number of degrees Celsius. Shifting of the operational temperature range may be within a range of temperatures. For example, the operational temperature maximum may be shifted between 98° C. and 147° C., and the operational temperature minimum may be shifted between 96° C. and 145° C., with the operational temperature range being about 2° C. In this example, the over temperature may be about 150° C. These temperatures are provided for illustrative purposes only, and it is within the scope of the invention to utilize any suitable operational temperatures and any suitable operational temperature range. It is contemplated that the amount of shift may be governed by factors such as: physical characteristics of the specific steam generator; precision and accuracy of the control system, including the temperature sensors; and operating environment. Any of these factors are subject to compromise between the technically possible and what is practical.
Referring now to
After the operational temperature range shift, which corresponds to shifting the control area 2, the actual temperature becomes stable in the control area 2, as shown in
After the second operational temperature range shift, the actual temperature becomes stable in the control area 2, as shown in
The example provided in
The degree of calcification of the steam generator 60 may increase with increased usage, even with performing processes for cleaning the steam generator 60. Consequently, as the number of operational cycles for the steam generator 60 increases, the operational temperature range and the actual temperature tend to gradually increase, as illustrated in
While the control method described above includes adjusting the operational temperature range and the flow rate of water to the steam generator 60, it is possible to control the steam generator 60 without adjusting the flow rate of water. As already described, the behavior of the actual temperature is indicative of the calcification of the steam generator 60, and the operational temperature range may be set and reset based on the behavior of the actual temperature with a fixed flow rate of water. Although the performance of the steam generator 60 may not be as desirable as when controlled by the method involving changing the flow rate of water, the modified method may still be beneficial as the steam generation efficiency may be improved because the operation of the steam generator 60 is responsive to changes in calcification.
The methods described above for operating the steam generator 60 may be utilized in various types of fabric treatment appliances having various types of steam generators and are not limited for use with the washing machine 10 and the steam generator 60 described above and shown in the figures.
While the invention has been specifically described in connection with certain specific embodiments thereof, it is to be understood that this is by way of illustration and not of limitation, and the scope of the appended claims should be construed as broadly as the prior art will permit.