The claimed invention relates to a method for operating a steering system and a steering system.
It is known that the control path for a rack position control is highly nonlinear. The acting counterforces vary strongly depending on the current driving situation. For example, the friction of the wheels is highest at rest and decreases with increasing vehicle speed. The design of the axle can also markedly influence the variation of counterforces. Moreover, a counterforce and inertia originating from the steering wheel and steering column are introduced into the steering system and interact with the axle. As a result, today's rack position controllers are designed as a compromise for all operating points.
The underlying problem of the invention is solved by a method for operating a steering system as claimed in claim 1 and a steering system as claimed in a secondary claim.
The method includes: determining a first torque as a function of a target rack position and as a function of an actual rack position, determining a second torque as a function of a vehicle speed, determining a supporting torque as a function of the first and second torques, and introducing the supporting torque into a steering gear of the steering system.
Owing to the proposed method, the design of the controller is significantly simplified and the combination of control and pre-control can ensure a high performance of the controller at all operating points.
One advantageous embodiment is characterized in that the method includes: determination of a first partial torque of the second torque as a function of the actual rack position and as a function of the actual vehicle speed. In this way, counterforces in the sense of the first partial torque, which act in a static situation, i.e. at a constant vehicle speed and constant rack position, are pre-controlled.
One advantageous embodiment is characterized in that the method includes: determination of a second partial torque of the second torque as a function of an actual rack speed or a target rack speed and as a function of the vehicle speed. By taking into account the rack speed, it is possible using the vehicle speed to take into account the friction between the tire and the road for the pre-control.
One advantageous embodiment is characterized in that the method includes: determination of a third partial torque of the second torque as a function of a product of an actual rack acceleration or a target rack acceleration with a first factor that is predetermined, in particular determined in advance. By including the rack acceleration, an inertia of the power steering can be taken into account and compensated.
One advantageous embodiment is characterized in that the method comprises: determination of a fourth partial torque of the second torque as a function of a product of an actual torsion bar torque with a second factor that is predetermined, in particular determined in advance. Through the inclusion of the actual torsion bar torque, inertia and friction from the steering column and originating from the steering wheel are taken into account and compensated.
Another aspect concerns the steering system, wherein the steering system comprises a control unit, a drive unit and a steering gear. A first torque can be determined as a function of a target rack position and as a function of an actual rack position by a position sensor. A second torque can be detected as a function of the vehicle speed by a speed sensor. A supporting torque can be determined as a function of the first torque and the second torque. The supporting torque can be introduced into the steering gear of the steering system by means of the drive unit.
Further embodiments and features of the invention can also be found in the following description of the exemplary embodiment. In the drawing:
In this description rack-and-pinion steering is predominantly assumed, wherein the steering gear comprises a pinion 10 and a rack 12. The steering gear 8 is connected via the pinion 10 and the rack 12 on each side of the vehicle to a steering rod 14, each of which interacts with a wheel 16. In principle, the steering system 2 represents one of a variety of possible embodiments of suitable devices for carrying out the method according to the invention. For example, a drive unit can also be located on the steering column. Other embodiments may thus be implemented by other steering gears or by a different arrangement of drives. In particular, in one embodiment the steering system 2 is a steer-by-wire steering system. Furthermore, further sensors may be arranged in the steering system, the arrangement and implementation of which are not addressed at this point.
A steering means 20, for example a steering wheel, is arranged on a torsion bar 18. In a normal operating mode of the steering system 2, the angle of the steering means applied by the driver can be applied to the steering gear increased or reduced by means of the overlay steering 6. This steering angle difference, which is introduced into the steering gear 8 by the overlay steering 6, is also referred to as the auxiliary steering angle. Of course, instead of a torsion bar 26, a steering column may be arranged between the steering means 28 and the overlay steering 6. In this embodiment the torsion bar is arranged between the overlay steering 6 and the power steering 4.
The power steering 4 comprises a motor, which can also be referred to as a drive unit 22, and a gearbox 24. A control unit 26 is assigned to the power steering 4. The drive unit 22 acts on the rack 12 via the gearbox 24. The control unit 26 has a microprocessor 28, which is connected to a memory element 30 via a data line. The microprocessor 28 can also be referred to as a digital computing device on which the methods described here can be executed. The memory element 30 can also be referred to as a storage medium. A computer program to be run on the microprocessor 28 can be stored on the memory element 30.
A torsion bar torque 34 determined by a sensor 32 is fed to the control unit 26. Depending on the delivered torsion bar torque 34, the control unit 26 determines a supporting torque 36, which represents a target value for a supporting torque to be applied and is accordingly delivered to the drive unit 22 converted as the control variable.
The power steering 4 comprises a position sensor 38, which determines an actual rack position 40 and feeds this to the control unit 26. Furthermore, the motor vehicle comprises a speed sensor 42, which determines an actual vehicle speed 44 and feeds this to the control unit 26. Alternatively, the actual vehicle speed 44 can also be fed to the control unit 26 from another control unit.
A pre-control 210 determines a second torque 36_2_ as a function of the target rack position 41, as a function of the actual rack position 40 and as a function of the actual vehicle speed 44. The supporting torque 36 is determined as a function of the sum of the first torque and the second torque 36_1, 36_2, wherein the sum is formed by the addition point 212. The supporting torque 36 is fed to the drive unit 22 as a signal to introduce the supporting torque 36 into the steering gear as a physical variable.
A second block 320 determines a second partial torque 36_2_b of the second torque 36_2. The second partial torque 36_2 is provided for compensation of the friction, which decreases with increased vehicle speed. A third block 330 determines a third partial torque 36_2_c of the second torque 36_2. The third partial torque 36_2_c is provided to compensate for a mass inertia of the mechanical components involved in the area of steering and/or power steering. A fourth block 340 determines a fourth partial torque 36_2_d of the second torque 36_2. The fourth partial torque 36_2_d is provided for compensation of the inertia and friction originating from the steering column.
The second torque 36_2 is formed by means of an addition point 350, to which the first to fourth partial torques 36_2_a to 36_2_d are fed. The first to fourth partial torques 36_2_a to 36_2_d are filtered in an embodiment that is not shown, wherein a suitable filter is a moving average filter or a 1st order low-pass filter, for example.
For example, block 604 interpolates the counterforce in the following way. At a vehicle speed of 30 km/h, the maximum counterforce is 2000N. The rack position, at which 2000N is acting, is 50 mm. If the current rack position is 25 mm, the result is 1000 N=(25 mm/50 mm)*2000N. If the current rack position is greater than or equal to 50 mm, 2000 N results as the counterforce.
To reduce steering wheel rotational vibrations, the fourth partial torque 36_2_d is multiplied by −1 in a form that is not shown, i.e. the sign is inverted. This achieves a boost instead of compensation. As a result, the rack is inhibited in its acceleration and the undesirable rotational vibrations are reduced and thus the performance of the controller is improved.
Number | Date | Country | Kind |
---|---|---|---|
10 2017 220 929.1 | Nov 2017 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2018/077894 | 10/12/2018 | WO | 00 |