The invention relates to a method for operating a steering system and to a computer program with programming means for carrying out such a method.
A generic method is known from DE 197 51 125 A1. For this method, the steering movements, applied by the driver by means of a steering wheel, are superimposed on the motor angle by steering wheel angles, determined by a sensor, by means of a superimposed gear mechanism with the movements of the servo drive. The thus resulting superimposed movement is passed on over the steering gear or the steering linkage to the steerable wheels for adjusting the steering angle. For this purpose, the servo drive is designed as an electric motor. The principle of functioning or the useful applications of such a power steering system consist especially therein that the steering can be carried out indirectly by the gear ratio of the superimposed gear mechanism and, with that, slight steering wheel moments can be attained. As a result, very large steering wheel angles are avoided in that suitable motor angles are superimposed, so that the necessary output angles can be adjusted with steering wheel angles of the usual magnitude. The motor angle or its nominal value, required for steering support, is determined from the steering wheel angle. Moreover, the motor angle may also depend on the signals, which represent the vehicle movements, detected by sensors and/or other vehicle systems, such as an electronic stability program (ESP). This takes place by means of a control device, on which the programs, required for determining the necessary motor angles or for the control of the useful applications can be carried out.
Because of the safety requirements, which such a steering system must meet, a safety concept with safety and diagnosis functions is indispensable, especially if for discovering random errors in the sensor system, the control device itself or the actuator system and to react suitably, that is, for example, to switch the useful functions, especially the variable steering gear ratio, suitably and/or to start appropriate substitute modes. The input signals of the control device are tested for plausibility. For example, it would be disadvantageous to accept a distorted speed signal, since the variable steering gear ratio is varied as a function of the speed.
The variable steering gear ratio of the steering system calculates the desired motor angle position on the basis of the vehicle speed, pinion angle and steering wheel angle. In the absence of the first two signals, the variable steering gear ratio may be converted into a safe but furthermore active substitute state. In the absence of the steering wheel angle signal, however, there is no information concerning the driver's steering wishes. For this situation, a meaningful substitute mode is not possible and the variable steering gear ratio must be switched off. However, since a motor angle was superimposed by the superimposed driving mechanism or the servo drive, a so-called inclined state of the steering wheel now results, that is, with the steering wheel in the straight ahead position, the steerable wheels possibly are inclined.
It is therefore an object of the present invention to provide a method for operating a steering system and a computer program for implementing the method of the type mentioned above, which, when the useful functions are switched on and off, avoids an inclined position of the steering wheel.
The input signals of the control device are monitored constantly by means of suitable safety functions and, because of this monitoring, the useful functions (such as the variable steering gear ratio) are switched on and off appropriately. By means of a controlled turning back of the servo drive, a possibly occurring steering wheel inclined position is removed reliably and almost imperceptibly for the driver when switching into a fall-back plane. By these means, the comfort of the steering system is increased substantially.
It is advantageous if steering portions for producing the control signal are superimposed by the useful functions, the steering portions for the controlled turning back of the servo drive being limited appropriately.
By these means, the individual steering portions or nominal angle defaults of all useful functions are superimposed on or added to a control signal. This may happen essentially relatively by means of specified priorities. For example, the variable steering gear ratio may have precedents as useful function and flow absolutely into the calculation, whereas the steering portions of the remaining useful functions are taken into consideration only relatively thereto. The steering portions of the useful functions for the controlled turning back of the servo drive when a substitute mode of at least one useful function is switched on or off are limited in a simple manner. This can take place separately for each steering portion, as well as for the already calculated control signal as a whole or also combined.
A substitute mode of at least one useful function can be switched off or on because of defective input signals of the control device.
A variable steering gear ratio, a lead steering or a driving dynamic stabilization come into consideration as useful functions. Moreover, other useful functions are, of course, also conceivable.
In a method development of the invention, provisions can furthermore be made said that the servo drive is turned back slowly, in a controlled manner, by means of a low angular speed and the course of the control signal for the motor angle of the servo drive is steady at the same time.
As a result, the driver hardly notices that the servo drive has been turned back. A movement of the servo drive causes a reaction moment at the steering wheel, which should be kept very small. A constant, high driving comfort accordingly is ensured.
Advantages with respect to the computer program arise similarly and are evident from the description.
An example of the invention is described in principle by means of the accompanying drawings.
An example of the invention is shown in the following, the starting point being, for example, a superimposed steering, which has already been mentioned.
In
A reaction moment MV, which is affected by the street, acts on the wheels 15a and 15b, which are designed to be steered. Furthermore, sensors 26 and 28 can be seen in
The well-known relationships between the angles and torques shown in
iL(δFm)=(δS/iü+δM) (1)
and
ML=MV/(iL*iü) (2)
A power steering function is achieved by the steering system shown in
According to equation 2 above, the steering wheel moment ML depends only on the reaction moment MV at the steerable wheels and, accordingly, cannot be affected by the motor intervention. This results in the already mentioned problem that an acceptable steering wheel moment or steering sensitivity cannot be achieved for all driving situations by selecting a constant gear ratio relationship of the steering gear. In particular, the steering wheel moment ML must not be too large in the stationary state or too small when driving at high speeds.
Because of the therefrom resulting safety requirements with the respect to the steering system, a safety concept with safety and diagnosis functions, especially for detecting and appropriately reacting to random errors in sensors 26, 28, the steering device 27 itself or the actuator system, that is, for example, to switch especially the variable steering gear ratio VSR suitably, is indispensable. The input signals of the control device 27, especially δS and the vehicle-specific data of the sensors 26 are checked for plausibility. For example, it would be disadvantageous to accept a wrong speed signal vx of the vehicle, since the variable steering gear ratio VSR is varied as a function of the speed.
The variable steering gear ratio of the steering system calculates a desired motor angle default or a steering portion δMdVSR on the basis of the vehicle speed vX, pinion angle δG and steering wheel angle δS (refer also to
Pursuant to the invention, when a correction of the inclined state of the steering wheel is necessary, as shown in
The inventive method of operating a steering system is preferably realized as a computer program on the control device 27. For this purpose, the computer program is stored in a memory element (not shown) of the control device 27. The inventive method is carried out by processing on a microprocessor of the control device 27. The computer program may be stored on a computer-readable storage medium (diskette, hard drive, CD-ROM, DVD, SD card, etc.) or an Internet server as computer program product and, from there, be transferred into the memory element of the control device 27.
Number | Date | Country | Kind |
---|---|---|---|
10 2004 028 829 | Jun 2004 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
4726437 | Norton | Feb 1988 | A |
4730686 | Shimizu | Mar 1988 | A |
4956590 | Phillips | Sep 1990 | A |
4979114 | Oshita et al. | Dec 1990 | A |
5122958 | Eto et al. | Jun 1992 | A |
6152254 | Phillips | Nov 2000 | A |
6256893 | Forborgen | Jul 2001 | B1 |
6598699 | Takehara et al. | Jul 2003 | B2 |
6817620 | Howard | Nov 2004 | B1 |
7177745 | Tsuchiya | Feb 2007 | B2 |
7389850 | Fleck et al. | Jun 2008 | B2 |
20010026613 | Hackl et al. | Oct 2001 | A1 |
20020060538 | Hara et al. | May 2002 | A1 |
20030070867 | Magnus | Apr 2003 | A1 |
20040016294 | Sugitani et al. | Jan 2004 | A1 |
20050087388 | Turner et al. | Apr 2005 | A1 |
Number | Date | Country |
---|---|---|
197 51 125 | Sep 1998 | DE |
199 02 939 | Mar 2000 | DE |
100 32 340 | Jan 2002 | DE |
100 45 385 | Mar 2002 | DE |
Number | Date | Country | |
---|---|---|---|
20050279564 A1 | Dec 2005 | US |