The invention relates to a method for operating a waste heat steam generator, in particular to the load-dependent control of a waste heat steam generator designed according to the forced flow principle.
EP 2 224 164 A1 discloses a method for operating a waste heat steam generator comprising an evaporator, an economizer with a number of economizer heating surfaces, and a bypass line connected in parallel with a number of economizer heating surfaces on the flow medium side. In order to increase the operational safety and reliability of the waste heat steam generator, here a method is disclosed with which, in all load states, formation of a water-vapor mixture at the inlet to the evaporator is to be reliably avoided. To this end, provision is made that a variable that is characteristic of the heat energy supplied to the waste heat steam generator is used for the control or regulation of the flow rate of the bypass line, in order thereby, in the event of an increase in the variable, to reduce the flow rate of the bypass line. As a result, even in the event of an increase in the heat energy supplied to the waste heat steam generator and therefore still before the measurement of an actual change in the temperature or supercooling at the inlet of the evaporator, the flow rate of the bypass line can be adapted appropriately. This is because, in the current operating mode of the waste heat steam generator, if the heat energy supplied to the waste heat steam generator increases, then this is linked with an increase in further thermodynamic state variables of the flow medium (such as, for example, feed water mass flow, pressure, medium temperature), which, because of the physical laws, is directly associated with an increase in the inlet supercooling. Therefore, in such a case, the flow rate of the bypass line should be reduced, so that the temperature at the outlet of the economizer rises and thus the supercooling at the evaporator inlet is reduced. Correspondingly conversely, in the event of a reduction in the variable, the flow rate of the bypass line is advantageously increased, in order thus to adapt the outlet temperature of the economizer in a targeted manner. The control of the flow rate can here also be carried out as a function of a predefined supercooling setpoint.
During the regulation or control of the feed water rate of a waste heat steam generator designed according to the forced flow principle, it has transpired that load-dependent non-steady temperature fluctuations of the flow medium emerging from the evaporator cannot always be avoided optimally merely with the method known from, for example, WO 2009/150055 A2.
An object of the invention is, therefore, to provide an optimized method for operating a waste heat steam generator.
This object is achieved by the method having the features of the independent claim.
With the method according to the invention, without greater additional outlay, even fluctuations of the evaporator outlet temperature occurring during non-steady operation of the waste heat steam generator can be effectively minimized. In practical terms, this means that the component loading of the waste heat steam generator can be reduced further under given transient requirements or, with comparatively equal component loading, the plant flexibility can be increased further. To this end, in the device known from EP 2 224 164 A1, adaptations of the basic method for controlling or regulating the flow rate of the flow medium through the bypass line are thus substantially required.
Advantageous developments of the method according to the invention can be gathered from the sub-claims.
The invention is now to be explained by way of example by using the following figures, in which:
According to the invention, a regulating and control device 100′ that is expanded as compared with the regulating control device 100 known from EP 2 224 164 A1 is provided. Here, the control and regulation of the flow rate of the bypass line 4 is carried out as a function of a variable 30 that is characteristic of the heat energy supplied to the waste heat steam generator and as a function of a supercooling setpoint 26 at the inlet of the evaporator 16 and, in addition, as a function of a superheating setpoint 110 at the outlet of the evaporator 16. The superheating setpoint 110 predefines in this case a setpoint for an outlet temperature of the flow medium at the evaporator 16. To regulate the superheating at the evaporator outlet, at this location a pressure measuring device 121 and a temperature measuring device 131 are provided, which are processed accordingly in the expanded regulating and control device 100′.
For completeness, a feed water control device SWS for controlling the feed water main valve 141 is also sketched in
Against the background of physical principles, fluctuating inlet temperatures in a waste heat steam generator designed in accordance with the forced flow principle result in fluctuations of the outlet temperature. Here, falling inlet temperatures on account of falling specific volumes and the directly linked reduction in the evaporator flow lead to rising temperatures and superheating at the evaporator outlet. The converse is correspondingly true. In general, this is an undesired effect during non-steady operation, which should be compensated as far as possible by suitably implemented countermeasures in the control concept for the feed water main valve 141. On account of the high load gradients which are usually applied nowadays, however, this is not always possible merely via the feed water regulation. For an improvement in this situation, the present invention is used, but which now follows precisely the opposite route and makes use of the previously described undesired physical effect. By means of specific manipulation or changing of the evaporator inlet temperature in a suitable way, a reaction is made to deviations of the evaporator outlet temperature relative to the predefined setpoint, in order in this way to keep fluctuations of the outlet temperature as low as possible. For instance, if in the non-steady case the evaporator outlet temperature falls undesirably sharply, the evaporator flow can be reduced temporarily by a reduction in the evaporator inlet temperature (opening the flow control valve 6 of the bypass line 4), and thus the outlet temperature can be supported. For the converse case, the evaporator inlet temperature should be increased (closing the flow control valve 6 of the bypass line 4), in order to counteract a rise in the evaporator outlet temperature by means of a temporary increase in the evaporator flow. However, here it is necessary to take care that, against a background of thermo-hydraulic points of view, a maximum evaporator inlet temperature should not be exceeded or a minimum required inlet supercooling should not be undershot. Furthermore, the method according to the invention assumes that the expanded regulating and control device 100′ is also actually capable of influencing the evaporator inlet temperature in the desired direction. In practical terms, this means that, for a further reduction in the evaporator inlet temperature, the flow control valve 6 must not already have been opened fully, while for an increase it should not have been closed fully. Furthermore, it is particularly advantageous for the method presented here if the secondary flow led around the economizer heating surfaces is not already admixed with the main flow of the flow medium again before the last economizer stage but directly at the evaporator inlet, since only in this way can the rapid change in the evaporator inlet temperature required under certain circumstances be ensured. The risk of incorporating the bypass flow at the evaporator inlet lies, however, in possible vapor formation in the last economizer stage, which is to be avoided. Displacing the feed water control valve from the inlet of the first economizer stage (as illustrated in
If the method according to the invention is used in a waste heat steam generator designed in accordance with the forced flow principle, fluctuations of the superheating at the evaporator outlet can effectively be reduced, as simulations of a sub-critical evaporator system of such a forced flow waste heat steam generator have shown. The fluctuations of the evaporator outlet superheating amount to about 90K without the application of the method indicated here, while these fluctuations can be reduced to about 50K when the concept according to the invention is applied.
This application is the U.S. National Stage of International Application No. PCT/EP2016/068732 filed Aug. 5, 2016, claims the benefit thereof, and is incorporated by reference herein in its entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2016/068732 | 8/5/2016 | WO | 00 |