The present invention relates to a method for operating an image-forming device, the image-forming device comprising an image-recording medium, a toner supply roller arranged for supplying toner particles to the image-recording medium, a developing element comprising a rotatable sleeve and an internal stationary magnet system generating a first magnetic field, and a cleaning magnet system, configured to provide an activatable second magnetic field,
the image-forming device being operable in a printing mode wherein the toner supply roller supplies toner particles to the image-recording medium,
the rotatable sleeve rotates in a first direction so as to form a toner assembly in a developing zone by an interaction between the magnetically attractable toner particles and the first magnetic field generated by the stationary magnet system, while removing excessive toner and transporting the same back to the toner supply roller, and the image-recording medium forms a toner image on the image-recording medium in the developing zone by selectively electrically attracting toner particles onto the image-recording medium in accordance with a digital image pattern.
An Image-forming method (i.e. method performed in the printing mode) and image-forming device being operable in a printing mode are described inter alia in European patent 0718721. In this patent, a toner powder image formed in an image-forming zone on the surface of an image-recording medium is transferred directly or indirectly via an intermediate medium to a receiving material, such as plain paper, and fixed thereon. The image-recording medium is then used again for the next image-recording cycle. The image-forming method (i.e. method performed in the printing mode) and image forming device being operable in a printing mode is described in more detail in
A disadvantage of the known image-forming device is that in the printing mode coarse toner particles are being captured in the toner assembly which is formed in the developing zone. Coarse toner particles in the sense of the present invention are toner particles having a size, larger than the average particle size of the toner powder, such that the magnetic force exerted on a toner particle by the stationary magnet system of the developing element may be equal or larger than the electric force exerted in a substantially opposite direction by an energized image-forming electrode. Such toner particles are also referred to as ‘non-printable’ toner particles, because they cannot escape from the magnetic field of the stationary magnet system of the developing element. Coarse toner particles will therefore accumulate in the toner assembly which may eventually lead to ‘white stripe marks’ (i.e. regions on the image-recording medium where no toner is printed) on the image-recording medium in the rotation direction of the image-recording medium and thus to an inferior print quality.
Toner production processes may be the cause that coarse toner particles are inherently present in the toner powder. Coarse toner particles may also be formed by aggregation of smaller toner particles.
Coarse toner particles may be cleaned from the known image-forming device by stopping the toner supply from the toner supply roller to the image-recording medium and rotating the sleeve of the developing element in the first direction such that toner particles may be transported back to the toner supply roller until the toner assembly in the development zone is completely broken down.
A disadvantage of this cleaning method is that the ‘non-printable’ coarse toner particles are transported back to the toner supply roller. Because coarse toner particles are not permanently removed from the image-forming device, such particles will accumulate in the image-forming device and will eventually lead to ‘white stripe marks’ again. Due to the increasing concentration of coarse toner particles in the image-forming device, the frequency of occurrence of ‘white stripe marks’ will increase over time.
It is an object of the present invention to provide a method for selectively removing magnetically attractable toner particles from the image-forming device.
This object is achieved by the method according to the preamble, the image-forming device comprising a cleaning magnet system, configured to provide an activatable second magnetic field, the method comprising a step of switching the image-forming device into a cleaning mode, the cleaning mode comprising:
The toner particles may be permanently removed from the image-forming device by deactivating the cleaning magnet system, such that the removed toner particles are collected in a toner collecting bin.
In an embodiment, the rotatable sleeve is rotated in the first direction during a pre-determined amount of time prior to rotating the rotatable sleeve in the second direction. An advantage of this embodiment is that first printable toner particles (i.e. normally sized toner particles) which are still present in the toner assembly in the developing zone may be transported back to the toner supply roller. The magnetic interaction between the stationary magnet system of the developing sleeve and coarse toner particles is stronger than the magnetic interaction between the stationary magnet system and normally sized toner particles. Due to this stronger interaction, coarse toner particles will be captured in the toner assembly for a longer time. Eventually, coarse toner particles will also be transported back to the toner supply roller. The rotatable sleeve may be rotated in the first direction during a pre-determined time, which is just long enough to transport normally sized toner particles back to the toner supply roller and short enough to prevent coarse toner particles to be transported back to the toner supply roller. This method thus provides a step which enables selective removal of coarse toner particles from the developing element of an image-forming device, by first concentrating the coarse toner particles in the toner assembly and then removing them in the subsequent steps of the method.
In another embodiment the second magnetic field is generated by positioning a movable arranged permanent magnet near the rotatable sleeve.
In another embodiment the second magnetic field is generated by activating an electro-magnetic activatable magnet system.
The present invention also relates in another aspect to an image forming device, the image forming device comprising an image-recording medium, a toner supply roller arranged for supplying toner particles to the image-recording medium, a developing element comprising a rotatable sleeve and an internal stationary magnet system generating a first magnetic field, a cleaning magnet system, configured to provide an activatable second magnetic field, and a controller configured to switch the image-forming device into a cleaning mode so as to stop the toner supply, to rotate the rotatable sleeve in a second direction and to activate the cleaning magnet system.
In an embodiment the activatable cleaning magnet system is a moveable permanent cleaning magnet, which for example comprises a roller on which a permanent cleaning magnet is arranged. The moveable permanent cleaning magnet system may be activated by moving the permanent cleaning magnet from an idle position to an active position, for example by rotating the roller from an idle to an active position. In the idle position the magnet system is arranged such that the magnetic field of the permanent cleaning magnet does not influence the printing process. In the active position, toner particles are collected under the influence of the magnetic field of the permanent cleaning magnet.
In another embodiment the cleaning magnet system is an electro-magnet which may be activated by energizing the electro-magnet.
In another embodiment the activatable cleaning magnet system and the developing element are arranged such that they are separated by a solid wall. This particular arrangement has the advantage that the cleaning magnet system remains free of toner and does not need to be cleaned. The waste toner remains inside the frame and may be removed by an operator.
In another embodiment the image-forming device comprises a toner collecting bin. The toner collector bin may be formed by a wall of a frame which holds the image forming device. The presence of a collector bin prohibits the waste toner from re-entering the image-forming process.
The invention is explained in detail with reference to the following description and accompanying drawings wherein:
The image-forming device shown in
The powdered surface of the image-recording medium 15 is then fed to an image-forming zone 18 where a magnetic roller 17 is disposed a short distance from the surface of the medium 15 and comprises a rotatable electrically conductive sleeve and a stationary magnet system disposed inside the sleeve. The stationary magnet system comprises for example a ferromagnetic knife blade clamped between like poles of two magnets and is constructed as described in EP 0 304 983. Another type of stationary magnet system is described in EP 0 718 721 and comprises two oppositely magnetized areas separated by a gap. By applying a voltage between one or more image-forming electrodes of the image-recording medium 15 and the magnetic roller sleeve acting as a companion electrode, a powder image is formed on the image-recording medium. By the application of pressure this powder image is transferred to a heated rubber-coated roller 19. A sheet of paper is taken from the supply stack 25 by a roller 26 and is fed via belts 27 and rollers 28 and 29 to a heating station 30. The latter comprises a belt 31 trained around a heated roller 32. The paper sheet is heated by contact with the belt 31. The sheet of paper thus heated is now passed between the roller 19 and the pressure roller 35, the softened powder image on the roller 19 being completely transferred to the sheet of paper. The temperatures of the belt 31 and the roller 19 are so adapted to one another that the image fuses to the sheet of paper. The sheet of paper provided with an image is fed via conveyor rollers 36 to a collecting tray 37. Unit 40 comprises an electronic circuit which converts the optical information of an original into electrical signals which are fed, via wires 41 provided with sliding contacts, and via conductive tracks 42 formed in the side wall of the image-recording medium 15, to control elements 3 (see
Electrical signals originating from a computer or a data-processing device can be converted in unit 40 to signals fed to the control elements 3.
The image-recording medium 15 used in the image-forming device of
Finally, the pattern of image-forming electrodes 5 is covered with a smooth dielectric top layer 7 consisting of an approximately 0.8 micrometer thick layer of silicon oxide. The control element 3 comprises a support 10 provided in a known manner with an electrically conductive metal layer (such as copper), the metal layer being converted to a conductive track pattern 12 in known manner. The track pattern 12 consists, on the one hand, of the conductive connections between the various electronic components 13 of the control element 3 and, on the other hand, the control electrodes 6 each conductively connected to one image forming electrode 5 in each case. Finally, the control element 3 also comprises a cover 14 connected in manner known per se (e.g. gluing) to the support 10 so that a box-shaped control element 3 is formed, in which the electronic components are enclosed.
The electronic components 13 comprise a number of known integrated circuits (IC's) comprising a series-in parallel-out shift register, an output register, and drivers connected thereto with a voltage range of 25 to 50 volts. Each control electrode 6 is connected to a driver of one of the integrated circuits.
In the printing mode a toner assembly is formed in the image forming zone 18, as shown in
Coarse toner particles (e.g. the particle in
Such coarse toner particles need to be removed from the image-forming device, in particular out of the image-forming zone 18.
The frame 72 has been shaped such that a toner waste bin 73 is formed.
The cleaning mode involves the following steps:
The method according to the invention can be used, e.g. with toner powders having an electrically conductive surface coating consisting, for example, of carbon, a doped metal oxide such as tin oxide doped with fluorine or antimony, or a conductive polymer such as protonized polyaniline complex, such as known from WO 92/22911, or with electrically conductive toner powders which have obtained their conductivity by electrically conductive material, e.g. the above-mentioned protonized polyaniline complexes, being distributed over the volume of the toner particles. A toner powder of this kind can be obtained, for example, by melting 100 g of polyester resin as described above, then distributing 11 g of protonized complex of polyaniline emeraldine and camphorsulphonic acid (prepared in accordance with the instructions of Examples 1 and 3 of the patent application WO 92/22911) in the melt and then 33 g of magnetizable pigment (type Bayferrox B 318 made by Bayer AG, Germany). The homogeneous melt is then cooled to a solid mass and ground and screened to give particles having a particle size of between 10 and 20 micrometers. The powder image formed with such toner powder on an image-recording medium 15 can then be transferred by pressure to a sheet of paper or other receiving material and then fixed thereon on by heating, e.g. using (weak) magnetron radiation. Of course other fixing methods known per se can be used.
Number | Date | Country | Kind |
---|---|---|---|
08172801.6 | Dec 2008 | EP | regional |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/EP2009/067397 | Dec 2009 | US |
Child | 13155792 | US |